\ Dunner Kirchweg 77 -
:“t'renz 32257 Binde Spartan-I|
¢ electronic Germany
(0 www.trenz-electronic.de Develo pm ent SyStem
2002-May-4 Application Note: Game of Life

Introduction

The Spartan-ll Development System is de-
signed to provide a simple yet powerful platform
for FPGA development, which can be easily ex-
panded to reflect your application’s require-
ments.

The following application note was developed to
give the engineer a quick hands-on experience,
and to demonstrate the board’s features and
their application.

General Overview

The TE-BL Expansion Board provides a set of
standard functionality which is commonly used
by most applications:

e 7-segment displays

 LEDs

e Push buttons

¢ VGA output

« USB type “B” receptacle

e 48MHz oscillator

enz electronic

To speed-up application development, a stan-
dard VHDL module (entity tebl) was created, en-
capsulating the following functions:

e encoding of 7-segment displays

« multiplexing of LEDs

e debouncing of push buttons.

« emulation of switches

e generation of VGA timing

< encoding of USB signals

Based on the above mentioned VHDL module,
this application note describes an FPGA imple-
mentation of Conway’s Game of Life, demon-
strating the following tasks:

e using the 7-segment displays

e using the LEDs

e using the push buttons

e emulating switches

e using the VGA output

This application note concentrates on the cre-
ation of VGA images. For a more detailed dis-
cussion of the application of 7-segment
displays, LEDs and buttons, refer to the Buttons
& Lights application note.

uJ
=
=
a
a
@
R
o

lLenz

2001

..: Lo

Figure 1: TE-XC2S Base Board with TE-BL Expansion.

Spartan-ll Development System

Application Note: Game of Life

Architectural Description

Conway’s Game of Life is a mathematical game,
simulating the growth of a population of cells in
a toy universe. It is played on a two-dimensional
grid. For every generation, the state of each
square is computed according to the following
rules:

e on squares with two or three alive
neighbors, existing cells survive

e on squares with three alive neighbors,
a new cell is born

< on the remaining squares, the cells die

The remarkable thing about Life is the unexpect-
ed chaos that results from its simple rules.

Figure 2: Design hierarchy

The design is partitioned into several entities,
each of them serving a well-defined purpose.
Figure 2 visualizes the design hierarchy.

Entity core

The entity core implements the Game of Life
functionality by combining a set of building
blocks. Figure 3 illustrates the structure.

The instance Ulife implements the control logic
required to compute the next generation of cells
and to display the game on the VGA output.

The instances Uram_a and Uram_b are two
RAM banks with 4096x1 bits each. The control
logic toggles these two banks, so that one bank
serves as a data source holding the current gen-
eration of cells, while the other bank is used to
store the next generation of cells being comput-
ed.

The instance Ucolor maps the single bit output
from the control logic to an RGB plus intensity
tuple for VGA display. The color mapping may
be selected from four different palettes.

Finally, the instance Utebl contains the readily
provided TE-BL Expansion Board interface cir-
cuitry.

L
rst >
life
: : : dk - gen{15:0) | EETE)
=t ram4096x1
sw0) run
D{:‘ run ok
. TN . . .
EL ——addr{11:0}
—— 4i[0:0} dof0:0) ——
wren_s we .
ram4096x1
clk
= addr{11:0
= rddt_b{0:0} = dif0:0} ol 0} —
. wran_b we -
| EEE,] row(3:0) color
Rk > ik r D
VEIk vk {5>
&
.; sw7:8) — D

Figure 3: Entity core

2002-May-4

Spartan-ll Development System

Application Note: Game of Life

Entity life

The instance Ulife implements the control logic
required to compute the next generation of cells
and to display the game on the VGA output.

The entity life is clocked with the VGA dot clock,
as the entity works in close interaction with enti-
ty tebl creating the VGA timing.

Uram_a source >< destination

compute compute
universe universe

Uram_b destination >< source

Figure 4: RAM bank toggle

The universes dimensions are 64x64 cells,
which results in 10x8 pixels per cell at VGA res-
olution of 640x480 pixels. The 64x64 cell uni-
verse is stored in two RAM banks of 4096x1
each. Two banks are required, as the Game of
Life algorithm cannot be computed in-place.
Therefore one bank serves as the data source
to VGA and cell computation, while the other
bank is used as the destination. After complet-
ing computation of the next generation, the two
banks are toggled. Figure 4 illustrates this.

cell VGA
[| [

blanking

Figure 5: Compute during blanking

As VGA display and computation of the next cell
generation are assumed to be performed simul-
taneously, a mechanism is required, to share
the memory between VGA output and cell com-
putation. To avoid using dual-ported RAM, the
computation of cells is performed during the
blanking intervals, i.e. when the screen is black.
Refer to Figure 5 for further details. To keep
things simple, one cell is computed during each
horizontal or vertical blanking, resulting in a
computation time of approximately 140ms for
the complete 64x64 universe.

Entity ram4096x1

The instances Uram_a and Uram_b of entity
ram4096x1 are used to store a complete uni-
verse of cells at a given time. To achieve the
best possible implementation density, Block-
RAMs are used. As the WebPACK ISE software
package does not include the CoreGenerator,
manually instantiated RAMB4_S1 instances are
used. After FPGA configuration, the RAMs con-
tain the initial cell population. To do so, the
RAMs are initialized using the VHDL attribute
INIT_xx. The following code snippet details this:

architecture Xilinx of ram096x1 is
attribute INIT_00: string

attribute INIT_OF: string
attribute INIT_00 of Uram |abel is

"0000000000000000
0000000000000000
0000000000000000
0000000000000000";
attribute INIT_OF of Uam |abel is
*0000000000000000
0000000000000000
0000000000000000
0000000000000000";
begin
Uram ranb4_sl1 port map (
addr=> addr,
clk => clk,
rst => zero,
di =>di,
en => one,
we => we,
do => do);
end Xilinx;

The initial value is given in hex, please note that
there is no preceding ‘X’ used, as attribute
INIT_xx is of type string.

Entity fpga

The entity fpga is the top level of the design. It
performs the following functions:

* create a reset signal

* lock all I/Os to their pad locations

» specify timing constraints

While Xilinx recommends to assign design con-
straints using the Constraints Editor, this appli-
cation note uses VHDL attributes to pass the
constraints to the implementation tools. This is
especially useful for the novice user, as the de-
sign contains less files and is more consistent.

2002-May-4

Spartan-ll Development System

Application Note: Game of Life

The mechanism used here was proven with Xil-
inx’ WebPACK ISE 3.3WP8.x. In case your tool
chain does not support this method, the con-
straints me be additionally entered into a .ucf
file.

A detailed description of these mechanism may
be found in the Buttons & Lights application
note.

Entity tebl

A VGA image displays a rectangular area which
is composed of square pixels. The dimensions
of the image are 640x480 pixels. The image is
surrounded by a dark blanking area. Figure 6 il-
lustrates this.

640x480 blanking
image area

Figure 6: VGA image

The image is generated from a sequence of
frames which are repeated quickly enough, so
that the human eye does not notice the flicker.
The frames are identified by vertical sync puls-
es. Each frame displays 480 scan lines. Above
and below these lines is a blanking area, which
stays dark. See Figure 7 for further details.

vertical
sync pulse

rgb

vsync ' '
- C —

Figure 7: Vertical refresh cycle

The 480 scan lines are identified by horizontal
sync pulses. Each line displays 640 pixels. To
the left and to the right of these pixels is a blank-
ing area, which stays dark. See Figure 8 for fur-
ther details.

orizontal 640 pixels orizontal
blanking P sync pulse

rgh

hsync ! !
-« H —
— G - — | e

, —J -
- F >

Figure 8: Horizontal refresh cycle

The timing of these parameters is standardized,
so that signal sources and monitors may be
combined freely. Table 1 summarizes the timing
parameters.

Parameter | Description Time

A vertical refresh 16.6ms (60Hz)
B top blanking 1.02ms

C vertical image 15.25ms

D bottom blanking | 0.35ms

E vsync width 64us

F horizontal refresh | 31.77us (31.5kHz)
G left blanking 1.89us

H horizontal image | 25.17us

| right blanking 0.94us

J hsync width 3.77us

Table 1: VGA timing parameter

All these timing parameters are derived from the
pixel clock, which is typically 25.175MHz. Due to
the requirement of using a 48MHz oscillator for
USB, the tebl entity was adapted to use a
24MHz oscillator instead. This results in slightly
shortened blanking intervals, while the other pa-
rameters remain unaltered.

The entity tebl is provided as VHDL source code
and extensively commented. It is left up to the
interested engineer, to review this source for
more detailed information.

2002-May-4

Spartan-ll Development System

Application Note: Game of Life

Project files

The project files for this application note are pro-
vided in WebPACK ISE format with all synthesis
options set up to achieve a push button flow.
Furthermore, the resulting .mcs file to program
the Flash PROM and a .bit file to program the
FPGA via JTAG are provided.

To answer questions regarding synthesis, imple-
mentation and download of projects, our Tutorial
on WebPACK ISE is highly recommended.

References

* Spartan-Il Development System
Product Specification
Trenz Electronic
September 12, 2001

e Spartan-Il Development System
Tutorial on WebPACK ISE
Trenz Electronic
September 2001

e Spartan-1l Development System
Application Note: Buttons & Lights
Trenz Electronic
September 20, 2001

Revisions History

Version Date Who | Description
1.0 2001sepl7 FB Created
1.1 2002may04 | FB ISE 4.2

Table 2: Revisions History

2002-May-4

	Introduction
	General Overview
	Architectural Description
	Entity core
	Entity life
	Entity ram4096x1
	Entity fpga
	Entity tebl

	Project files
	References
	Revisions History

