
Dünner Kirchweg 77
32257 Bünde
Germany
www.trenz-electronic.de
Electronic design with FPGAs

Custom Logic Options

In most digital designs, the circuitry can be clas-
sified by the following categories:

• Standard products. These products provide a
functionality which is not associated with a
specific application area but common to a
broad range of devices. Typical parts in this
category are processors and memories.

• Application Specific Standard Products or
ASSPs. These products provide functional-
ity which is not associated with a specific
implementation, but common to an applica-
tion area. Typical parts in this category are
MPEG decoders.

• Custom Logic. This logic is associated with a
specific application and is the essence of
what distincts one product from another.
Often this is glue logic, connecting standard
products or ASSPs with each other.

There are several options on how to implement
custom logic, FPGAs being one amongst them.
These options are discussed in the following
paragraphs.

Figure 1: Typical Digital System

CPU

A
S

S
P

s

Memory A
na

lo
g

&
 M

ix
ed

 S
ig

na
l

Custom Logic
ASICs

ASIC is the abbreviation of Application Specific
Integrated Circuit. This denotes an integrated
circuit, that is fully customized to the require-
ments of a specific application. Today’s ASICs
are usually designed with a Standard Cell ap-
proach. This means, that the circuit is not de-
signed on the level of transistors, but on the lev-
el of gates, flips-flops, and memory blocks. The
basis for this is a library of primitives, which is
provided by the silicon foundry. ASICs can be
characterized by the following items:
• Lowest production cost

- a single wafer for $1,000 to $3,000 yields
thousands of chips

• Highest possible design density
• Highest NRE and Re-Spin cost:

- starting at about $2,500 for 2um process
on multi-project wafer

- about $250,000 for 0.13um process
• Highest development effort

- timing
- fault-coverage vectors
- stringent verification
- physical design by separate set of engi-

neers

As a standard cell layout results in a nearly opti-
mal implementation of a given circuit, the pro-
duction cost is at the lowest possible level.

This advantage is compromised by high Non-
Recurring Engineering costs (NRE) which are
mainly caused by expensive chip masks. In
case re-spins are required due to silicon faults
or design changes, new masks are required, re-
sulting further significant costs.

ASICs require an enormous development effort.
This is especially caused by the difficulty to sim-
ulate timing and by the need to provide test vec-
tors to the production foundry.

Due to these facts, ASIC development is associ-
ated with high volume productions. To achieve
these high volumes, special care has to be tak-
en, that the chips fit universally into a broad set
of applications. This often requires a significant
amount of configuration options.
Spartan-II
Development System
2001-November-5
 Tutorial: Introduction to FPGA Technology
1

Spartan-II Development System Tutorial: Introduction to FPGA Technology
Gate Arrays
Gate arrays are circuits providing a fixed Sea-of-
Gates fabric which is defined by the manufactur-
er, and an interconnection infrastructure which
is customized according to the application’s re-
quirements. Gate Arrays can be characterized
by the following items:
• Low production cost

- comparable to ASICs
• Low design density

- fixed architecture leads to
low gate utilization

• High NRE and Re-Spin cost
- about $100,000 for 0.35um process

• High development effort
- timing
- fault-coverage vectors

As the silicon remains unaltered throughout a
gate array family and the top metal layers are
the only parameter which is customized to the
application, production cost is comparable to
ASICs.

For the same reason, the NRE and re-spin costs
are drastically reduced, compared to ASICs but
still on a high level.

The given and proven silicon results in a re-
duced development effort, especially as there
are less parameters to be considered for timing
closure of the design.

Combining these facts, Gate Arrays seem to be
a much more attractive choice than ASICs. Un-
fortunately process development stopped at
about 0.35um, which leads to a much lower
transistor density, compared to recent ASICs.
The low gate utilization resulting from the fixed
architecture even augments this, resulting in a a
comparable low design density.
Trenz Electronic
FPGAs

FPGA is the abbreviation of Field Programma-
ble Gate Array. This denotes an integrated cir-
cuit which is programmed in the field, i.e. by the
system manufacturer. FPGAs can be character-
ized by the following items:
• High production cost
• Low design density

- programmable fabric
adds significant overhead

• No NRE and Re-Spin cost
• Low development effort

- Low dead-time
- simplified timing
- no test vectors
- relaxed verification
- physical design is “hands-off”

The production cost of FPGAs is usually signifi-
cantly higher than the production cost of ASICs.
This is mainly caused by the fact, that FPGAs
are built from a programmable fabric of logic
cells which emulate the user-defined functional-
ity. The resulting implementation overhead is
discussed in the Gate count metrics paragraph.

Due to their programmable nature, FPGAs are
rather Programmable ASSPs than custom logic.
As the customer buys them off-the-shelf, the
NRE and re-spin costs are reduced to zero.

Furthermore, the FPGAs nature of a Program-
mable ASSP simplifies development by a high
degree: The devices are fully tested and charac-
terized, timing is simple and predictable.

The missing NRE allows a change in tools. Dur-
ing design and debug, tools may favour compi-
lation time over quality-of-results, leading to low-
er dead-time. For the final runs before
production, the tools are configured to produce
the best possible performance.

The low dead-time in turn leads to a change in
mind. Logic design more and more resembles
software development with an iterative ap-
proach, designers taking a higher risk and
choosing more innovative approaches.

FPGAs are only available in certain sizes. This
leads to a marginal cost of zero for an extra gate
or routing resource. For this reason, area mini-
mization my not always be a factor, again lead-
ing to new design approaches.
2

Spartan-II Development System Tutorial: Introduction to FPGA Technology
Industry Dynamics & Time-to-Market
Contemporary consumer electronics drive a
change in industry dynamics. New products are
taking less time to go into volume. At the same
time, new products also stay in volume for short-
er periods, as Figure 2 shows.

This gives the time-to-market discussion a new
dimension, as time to market is more critical
than ever. Missing a market window, or being
late to market with a product because of a long
development/debugging cycle can have a pro-
foundly negative effect on the profitability of a
product over its life. According to the Market
Consulting Firm McKinsey and Co., late market
entry has a larger effect on profits than develop-
ment cost overruns or a product price that is too
high. This is especially true in highly competitive
markets, and those that have short market win-
dow. As Figure 3 and Figure 4 illustrate, a six
month delay costs one third of the profits over
the lifetime of the product.

A fast ramp to full production is a primary advan-
tage of FPGAs. FPGA deliveries come off the
shelf from the factory or from the inventory of

Figure 2: Changing Industry Dynamics

55 1010 1515 2020

YearsYears

1 million1 million

Color TVsColor TVs Cable TVCable TV

Black & Black &

White TVWhite TV

PCsPCs VCRsVCRsCellularCellularPCSPCS

DVBDVB

DVDDVD

Source: Synopsys; D. Merrman, “Wireless Communications Report,

“ BIS, Boston, 1995; Dataquest
Trenz Electronic
the local distribution partners, while typical ASIC
lead times run from 8-16 weeks. Immediate
FPGA production enables fast stocking of sales
channels and the rapid penetration of the cus-
tomer base. FPGAs help to avoid the delays re-
sulting from the long ASIC lead times that may
substantially decrease revenues and profits
throughout the life of the product.

Taking NRE cost and time-to-market into ac-
count, the comparison between ASICs and FP-
GAs changes in favour for FPGAs.

Figure 3: Time-to-Market is Critical

Figure 4: Time-to-Market Cost

Market rise Market fall

R
ev

en
u

e

Time

Time to market is a cost

Ship Product
Six Months

Late

Product
Cost 9%
Too High

50%
Development
Cost Overrun

%
 L

os
s

of
 P

ro
fit

10

30

20

40

50
3

Spartan-II Development System Tutorial: Introduction to FPGA Technology
Moore’s Law and the
Deep Submicron Era

Process-technology innovations

Silicon process migration was relatively stable
from the early 1980s until about 1993, working
its way down from 5 to 1 micron, yielding state-
of-the-art devices comprising about 50,000
gates. Breakthroughs in silicon design and fabri-
cation equipment, coupled with customer de-
mand for higher integration, spurred the rapid
migration from 1-micron technology down to the
0.13-micron processes now in development.
The capability to create multi-million gate de-
signs is a reality, but with it comes a host of is-
sues for ASIC technology, many of which FP-
GAs inherently resolve.

Mask gate arrays are actually penalized when
migrating to the advanced deep sub-micron
technologies at 0.35-micron and beyond. The
penalty occurs because the transistors in deep
sub-micron devices have shrunk much faster
than metal lines. The result is that interconnect
delay now dominates gate delay. Minimizing in-
terconnect delay requires adding metal mask
layers to create more routing resources. Each
photo mask for the 0.35-micron process costs
the ASIC supplier from $12,000-$15,000, as
well as extending the prototype fab time. Since
most gate arrays today are fabricated with four
or five custom metal layers, a $60,000-$75,000
cost for photo masks for each different customer
design easily results in more than $100,000 in
Non-Recurring Engineering (NRE) charges to
the customer! A deep sub-micron gate array los-
es much of its value when NREs are increased
to more than $100,000 and prototype time is ex-
tended. This is a primary reason that gate array
vendors such as LSI Logic and Motorola have

Figure 5: Two Decades of FPGA Development
Trenz Electronic
exited the gate array business to focus on the
complex Standard Cell market.

The most pressing issue for the ASIC industry
brought on by deep submicron technology is the
difficulty achieving closure from the logical to the
physical design realm. Wire delays account for
80% or more of the total delay equation in deep
submicron processes, which reduces simulation
margins and requires highly accurate modeling.
Even with exhaustive timing simulations and de-
lay modeling, the post-route timing can have lit-
tle relation to the timing achieved through simu-
lation. Furthermore logic designers are
concerned with preventing transistor placement
that could induce what's known as second- or
third-order effects. These effects are artifacts of
deep submicron technology; crosstalk, physical
transistor-level degradation, and reflections or
noise from simultaneously switching outputs are
just a few of the most common. The net impact
on standard-cell designers is an iterative design
cycle that can take months to close. Standard-
cell NRE now averages from $250,000 to over
$500,000 per prototype cycle. For many compa-
nies, this is not only a major expense, but a risky
one as well, since designs so often require more
than one “spin” prior to completion.

By comparison, the FPGA methodology has
unique advantages in the area of handling deep
submicron issues. FPGA tools are integrated
throughout the entire design flow, so there's no
separation between logical and physical design.
The design methodology flows from synthesis
and simulation directly through to place and
route. Designers have real silicon to test de-
signs, so testing is done in-system, versus a
“simulation-only” environment. Because FPGAs
are standard products, the actual transistor-level

Figure 6: Technology Advances
vs. Crossover Volume

Cumulative

Volume K units

Total cost

ASIC .25µ

FPGA .15µ
FPGA .25µ

ASIC .15µ

ASIC Costs

Start higher,

but slope is flatter

For each technology advance,

crossover volume moves higher
4

Spartan-II Development System Tutorial: Introduction to FPGA Technology
placement and routing is done by the FPGA
vendor during product development. As the
FPGA vendor already solved the general case
through careful development and qualification of
a robust technology, FPGA designers concen-
trate on maximizing the content and perfor-
mance of the design, rather than wrestling with
device physics.

Pad Limitation
Because FPGAs are high-volume standard
products, FPGA vendors are able to utilize the
most advanced fabrication processes. By doing
so, die sizes and manufacturing costs can be
substantially reduced. With recent FPGA fami-
lies, die size has been decreased to limits im-
posed by the I/O pads and, as a result, has
reached die size parity with many gate arrays.
These FPGAs and a mask ASIC with the same
number of pins are equivalent in both size and
cost.

The graph below plots FPGA devices according
to system gates and number of I/O. As indicat-
ed, FPGAs are most cost-competitive in the low-
density/ high-I/O (lower right) segment. The
graph may be used as a reliable indicator to de-
termine where FPGAs can be most competitive
with the ASIC in mass production. In short,
when FPGAs have the same number of I/Os as

Figure 7: Effect of Pad Limitation

SpartanXL XCS20XL
0.35µm 160 I/O

20K System
Gates

Gate Array
0.5µm 160 I/O

50K System
Gates
Trenz Electronic
the ASIC and meet the density needs of the de-
sign, the FPGA will clearly be a better choice.
By choosing FPGA devices you receive the
time-to-production and reprogrammability ad-
vantages of FPGAs at ASIC prices.

Being pad limited devices, FPGAs are a perfect
illustration of Moore's law, which states that for
each improvement in process technology, densi-
ty doubles while cost is cut in half. In high vol-
ume, a 100,000-gate FPGA sells for under $10,
making it a viable solution in consumer products
such as cell phones and small household appli-
ances. On the high-density end, programmable
logic users now pay the same price for 2 million
gates that they paid for 20,000 gates just a few
years ago. This trend is expected to continue,
with 500,000 system gates costing less than
$10 by 2003.

Figure 8: Pad-Limited Gate Count

Figure 9: The $10 Corridor
5

Spartan-II Development System Tutorial: Introduction to FPGA Technology
FPGA Usage
In the past, FPGAs have been a niche market.
Typical applications were prototyping and emu-
lation systems. Complexity was too low to imple-
ment real products and pricing was too expen-
sive for moderate volumes.

In the past four years, FPGA technology made
large success, changing the way FPGAs are
used dramatically:
• FPGAs are being used in

mainstream products
- Networking
- Telecom
- DSP
- Consumer electronics

• More FPGA design starts than
ASIC design starts

• 2 FPGA companies in the
top 10 chip suppliers

The following paragraphs detail the use of FP-
GAs in different application scenarios.

Use in Emulation systems

Emulation systems are used to functionally de-
bug complex systems. These emulation sys-
tems may be standalone units, or integrated into
a computer environment to serve as simulation
accelerators. There are several vendors provid-
ing off-the-shelf emulation systems; still, for spe-
cific applications, customized systems may be
required.

Use in Prototyping Systems

Prototypes are units, which closely resemble the
final product in functionality, however appear-
ance, performance and technology may differ
vastly from the final product. Prototypes are built
in low volumes, to further investigate a system’s
behavior, feasibility or performance. In most

Figure 10: Use in Emulation Systems

Very low per applicationVolume

Not stringentPerformance

Fairly high; Fast compile timesTime-to-market

Emulation (3%)
Trenz Electronic
cases, prototypes are used in the laboratory,
however prototypes may be deployed in the field
in small quantities as well.

Use in Pre-Production Systems

During production ramp-up, manufacturers often
chose to ship units with FPGAs. These FPGAs
are central to the system and are planned to mi-
grate to ASICs later on. Purpose of this is, to re-
duce time-to-market and the potential risk of
chip fault. Interesting enough, most designs
keep their FPGAs and do not migrate to ASICs,
because of the appealing charme of reprogram-
mability.

Use in Production systems

FPGAs are more and more used in production
systems, where they are central to the system.
Replacement by ASICs is not planned, reasons
are volumes or reprogrammability.

Figure 11: Use in Prototyping Systems

Figure 12: Use in Pre-Production Systems

Figure 13: Use in Production systems

Low per applicationVolume

Not stringentPerformance

Fairly high; Fast compile timesTime-to-market

Prototyping (30%)

D-2001-RJ/Xilinx

Moderately high per applicationVolume

Very criticalPerformance

Fairly high; Fast compile timesTime-to-market

Pre-production (30%)

D-2001-RJ/Xilinx

High per applicationVolume

Very criticalPerformance

Fairly high; Fast compile timesTime-to-market

Production (37%)
6

Spartan-II Development System Tutorial: Introduction to FPGA Technology
Case Studies

Just four years ago, FPGAs were an important
but peripheral niche in the semiconductor indus-
try. Known for their flexibility, FPGAs were wide-
ly used for ASIC emulation, glue-logic consoli-
dation, or as a solution for applications with
volatility and changing standards. FPGA pro-
cess technology usually lagged the industry by
at least one process generation, and the incred-
ible power of re-programmability was paced by
high production prices, slow internal perfor-
mance, and tools that required 10 to 20 hours to
compile 50,000 gates.

Fast forward to the year 2000, and FPGAs are
often the heart of the system, being designed
into mainstream as well as state-of-the-art high-
volume products. Market dynamics, technology
innovation, cost models, and tools have all been
affected by the deep submicron era. All these
factors have made FPGAs a viable alternative to
ASIC design. FPGAs facilitate flexible, quick
time to market and are being used as production
solutions in everything from networking and in-
dustrial to consumer applications. Architectural-
ly and by design, FPGAs minimize issues com-
mon to deep submicron technology, while
maintaining the ASIC abstraction. In keeping
with the entire semiconductor segment, the in-
dustry-leading FPGA companies are gaining
momentum, while the smaller players consoli-
date or seek out specific niches.

What's fueling the popularity of FPGA technolo-
gy to the point that it's now replacing both gate-
array and standard-cell ASICs in many applica-
tions? A unique combination of accelerating
product cycles, needs for higher integration than
is possible in a gate array, fast migration to deep
submicron process technology, and the explo-
sion of networked applications are the keys.

Set-top-box

Re-programmability is the driver, allowing de-
signers to take greater risks and innovate more
during the development phases without losing
time to market. It also forgives changing stan-
dards or last-minute feature changes, and en-
ables true in-system reconfigurability. This lets
telecom developers use one chip for many ap-
plications, rather than a separate ASIC for each
specific custom requirement.
Trenz Electronic
One example comes from a set-top-box maker
who discovered that one FPGA could replace
three ASICs, each one geared toward the cus-
tom specifications of Asia, Europe, and North
America.

The intellectual property (IP) portfolio of FPGA
suppliers is growing to include key system-level
cores, including PCI, DSP, microprocessor pe-
ripherals, and key telecommunications cores.
Designers cut their time to market by “dropping
in” cores, eliminating the need to re-create the
core design.

Designers are increasingly using FPGAs in pro-
duction. Their reasons are as varied as their ap-
plications, but all are directly related to the
changes that the logic industry is undergoing.

Fibre Channel switch

In another example, a designer chose an FPGA
for a Fibre Channel switching project, because
his ASIC plans couldn't be realized in a reason-
able time frame. This Fibre Channel system is
intended to increase bandwidth from 200 Mbits/
s to 1 Gbit/s for IBM protocols. The system had
to allow multiplexing and demultiplexing to cre-
ate a smoother transition to the higher band-
width.

Originally, the plan was to prototype the entire
system using FPGAs, then migrate to ASICs
once initial production turned to volume. The
ASIC designs came back from the fabrication
process with errors, and at the same time, the
FPGA prices were continuing to drop. With their
limited resources, the designers chose to pur-
sue new product development over continuing
to reduce cost. They also didn't want to lose the
benefits of programmability.

ASIC End-of-Life

In yet another example, the designer chose FP-
GAs as a production solution when his ASIC
vendor began to obsolete products in rapid suc-
cession. Some of the end products can have life
spans ranging for more than ten years, so the
company must support and produce its existing
products as long as customers need them.
When an ASIC becomes an obsolete part, engi-
neers can either respin another ASIC or use FP-
GAs/CPLDs.

When inventory on gate array devices ran out,
even after a “last time buy,” the company evalu-
7

Spartan-II Development System Tutorial: Introduction to FPGA Technology
ated programmable logic and found that they
could replace obsolete ASICs with FPGAs at a
competitive price point. In addition, they could
move their code to the FPGA at a high level.

Remote Hardware Updating
Of all the advantages programmable logic has
over ASICs, the most promising is the move to-
ward using networks to remotely upgrade the
digital hardware, not just software, in electronic
equipment already installed at a customer's site.
Updating software remotely with new enhance-
ments and bug fixes is fairly common. Remotely
updating hardware in this same manner might
seem slightly more challenging because the
system hardware is typically a fixed entity that
can only be updated by manual replacement,
such as board swapping.

The enabling technology to make this happen is
the FPGA. Of course, electronic-equipment
makers have been using FPGAs for years to
create their own unique ICs. A software bit-
stream programs SRAM-based logic elements
inside the FPGA to perform basic binary opera-
tions. Customers literally “re-wire” the FPGAs
any number of times during the design process
until they perfect the circuit, then use the final bit
stream to program as many FPGAs as neces-
sary for a given production run.

The types of systems that could benefit from be-
ing field updatable are wide-ranging. Almost any
system that has some type of connectivity to the
“outside world” could potentially benefit from be-
ing designed to support field updates. Typical
products include portable phones, network ap-
pliances, set-top boxes, security systems, net-
Trenz Electronic
work equipment, cellular base stations, satellite
communications systems. Other likely applica-
tions are HDTV, video and image processing,
encryption, military communications, surveil-
lance, radar, and sonar. Fixed logic solutions
based on gate array or standard cell technology
can't offer this capability.

Feature Replacement

The board diagram in Figure 14 illustrates how
many different functions can be integrated into
an FPGA to achieve significant cost savings.
This example design includes a PCI master/ tar-
get controller, some HSTL translators, a cache
controller, SSTL-3 translators for SDRAM, a
backplane interface, some glue logic, and the
clock management device. All of these functions
can be integrated into the 100k gate FPGA de-
vice which costs just $10.00, almost two-thirds
less than the discrete solution, with room to
spare for more logic. The FPGA solution also
uses less board real estate, requires less power,
and provides higher reliability.

Figure 14: An Example of FPGA Value
8

Spartan-II Development System Tutorial: Introduction to FPGA Technology
FPGA technology in detail
FPGAs are chips, which are programmed by the
customer to perform the desired functionality.
The chips may be programmed either
• once: Antifuse technology, e.g. devices man-

ufactured by Quicklogic
• several times: Flash based, e.g. devices

manufactures by Actel
• dynamically: SRAM based, e.g. devices

manufactured by Actel, Altera, Atmel,
Cypress, Lucent, Xilinx

Each technology has its own advantages, which
shall be discussed only very briefly:
• Antifuse FPGAs:

- devices are configured by burning a set of
fuses. Once the chip is configured, it can-
not be altered any more.

- bug fixes and updates possible for new
PCBs, but hardly for already manufac-
tured boards.

- ASIC replacement for small volumes.
• Flash FPGAs

- devices may be re-programmed several
thousand times and are non-volatile, i.e.
keep their configuration after power-off

- with only marginal additional effort, the
chips may be updated in the field

- expensive
- re-configuration takes several seconds

• SRAM FPGAs
- currently the dominating technology
- unlimited re-programming
- additional circuitry is required to load the

configuration into the FPGA after power-
on

- re-configuration is very fast, some
devices allow even partial re-configura-
tion during operation

- allows new approaches and applications-
buzzword “reconfigurable computing”,
e.g. a circuit, that searches for a specific
DNA pattern, or a mobile phone that
downloads the latest protocol update

General Overview
There are several families of FPGAs available
from different semiconductor companies. These
device families slightly differ in their architecture
and feature set, however most of them follow a
common approach: A regular, flexible, program-
mable architecture of Configurable Logic Blocks
(CLBs), surrounded by a perimeter of program-
Trenz Electronic
mable Input/Output Blocks (IOBs). These func-
tional elements are interconnected by a power-
ful hierarchy of versatile routing channels.

The following paragraphs describe the architec-
ture implemented by Xilinx Spartan-II FPGAs, a
device family launched in mid 2000, which is
typically used in high-volume applications where
the versatility of a fast programmable solution
adds benefits.

The user-programmable gate array, shown in
Figure 15, is composed of five major config-
urable elements:
• IOBs provide the interface between the pack-

age pins and the internal logic
• CLBs provide the functional elements for

constructing most logic
• Dedicated BlockRAM memories of 4096 bits

each
• Clock DLLs for clock-distribution delay com-

pensation and clock domain control
• Versatile multi-level interconnect structure

As can be seen in Figure 15, the CLBs form the
central logic structure with easy access to all
support and routing structures. The IOBs are lo-
cated around all the logic and memory elements
for easy and quick routing of signals on and off
the chip.

Values stored in static memory cells control all
the configurable logic elements and intercon-
nect resources. These values load into the
memory cells on power-up, and can reload if
necessary to change the function of the device.

Configurable Logic Block
The basic building block of the CLBs is the logic
cell (LC). An LC includes a 4-input function gen-

Figure 15: Basic Spartan-II Block Diagram
XC2S15

DLL DLL

DLLDLL

B
LO

C
K

 R
A

M
B

LO
C

K
 R

A
M

B
LO

C
K

 R
A

M
B

LO
C

K
 R

A
M

I/O LOGIC

CLBs CLBs

CLBs CLBs

DS001_01_091800
9

Spartan-II Development System Tutorial: Introduction to FPGA Technology
erator, carry logic, and a storage element. The
output from the function generator in each LC
drives both the CLB output and the D input of
the flip-flop. Each CLB contains four LCs, orga-
nized in two similar slices; a single slice is
shown in Figure 16.

In addition to the four basic LCs, the CLBs con-
tains logic that combines function generators to
provide functions of five or six inputs. Conse-
quently, when estimating the number of system
gates provided by a given device, each CLB
counts as 4.5 LCs.

Look-Up Tables

The function generators are implemented as 4-
input look-up tables (LUTs). In addition to oper-
ating as a function generator, each LUT can pro-
vide a 16x1-bit synchronous RAM. Furthermore,
the two LUTs within a slice can be combined to
create a 16x2-bit or 32x1-bit synchronous RAM,
or a 16x1-bit dual-port synchronous RAM.

The LUT can also provide a 16-bit shift register
that is ideal for capturing high-speed or burst-
mode data. This mode can also be used to store
data in applications such as Digital Signal Pro-
cessing. See Figure 17 for details on slice con-
figuration.

Storage Elements

The storage elements in the Spartan-II slice can
be configured either as edge-triggered D-type
flip-flops or as level-sensitive latches. The D in-
puts can be driven either by the function genera-
tors within the slice or directly from slice inputs,
bypassing the function generators

Figure 16: FPGA Slice

BY

F5IN

SR
CLK
CE

BX

YB

Y

YQ

XB

X

XQ

G4
G3
G2
G1

F4
F3
F2
F1

CIN

0

1

1

0

F5 F5

COUT

CY

D
EC

Q

D
EC

Q

F6

CK WSO

WSH

WE
A4

BY DG

BX DI

DI

O

WEI3
I2
I1
I0

LUT

CY

I3
I2
I1
I0

O

DIWE

LUT

INIT

INIT

REV

REV
Trenz Electronic
In addition to Clock and Clock Enable signals,
each slice has synchronous set and reset sig-
nals (SR and BY). SR forces a storage element
into the initialization state specified for it in the
configuration. BY forces it into the opposite
state. Alternatively, these signals may be config-
ured to operate asynchronously.

All of the control signals are independently in-
vertible, and are shared by the two flip-flops
within the slice.

Additional Logic

The F5 multiplexer in each slice combines the
function generator outputs. This combination
provides either a function generator that can im-
plement any 5-input function, a 4:1 multiplexer,
or selected functions of up to nine inputs.

Similarly, the F6 multiplexer combines the out-
puts of all four function generators in the CLB by
selecting one of the F5-multiplexer outputs. This
permits the implementation of any 6-input func-
tion, an 8:1 multiplexer, or selected functions of
up to 19 inputs. Usage of the F5 and F6 multi-
plexer is shown in Figure 18.

Each CLB has four direct feedthrough paths,
one per LC. These paths provide extra data in-
put lines or additional local routing that does not
consume logic resources.

Arithmetic Logic

Dedicated carry logic provides fast arithmetic
carry capability for high-speed arithmetic func-

Figure 17: Slice Configuration

Register

MUXF5

MUXFx

CY
SRL16

RAM16

LUT
G

Register

Arithmetic Logic

CY
LUT

F

SRL16

RAM16

ORCY
10

Spartan-II Development System Tutorial: Introduction to FPGA Technology
tions. The CLBs supports two separate carry
chains, one per slice. The height of the carry
chains is two bits per CLB.

The arithmetic logic includes an XOR gate that
allows a 1-bit full adder to be implemented with-
in an LC. In addition, a dedicated AND gate im-
proves the efficiency of multiplier implementa-
tion. The dedicated carry path can also be used
to cascade function generators for implementing
wide logic functions.

BUFTs
Each CLB contains two 3-state drivers (BUFTs)
that can drive on-chip busses, see Dedicated
Routing for further details. Each Spartan-II
BUFT has an independent 3-state control pin
and an independent input pin.The 3-state driv-
ers in conjunction with the on-chip busses may
be used to implement wide multiplexers effi-
ciently.

Input/Output Block
The IOB, as seen in Figure 19, features inputs
and outputs that support a wide variety of I/O
signaling standards. These high-speed inputs
and outputs are capable of supporting various
state of the art memory and bus interfaces.
Table 1 lists several of the standards which are
supported along with the required reference,
output and termination voltages needed to meet
the standard.

The three IOB registers function either as edge-
triggered D-type flip-flops or as level- sensitive
latches. Each IOB has a clock signal (CLK)

Figure 18: F5 and F6 Multiplexer

4
LUT

F5

4
LUT

F6

4
LUT

F5

4
LUT
Trenz Electronic
shared by the three registers and independent
Clock Enable (CE) signals for each register.

In addition to the CLK and CE control signals,
the three registers share a Set/Reset (SR). For
each register, this signal can be independently
configured as a synchronous Set, a synchro-
nous Reset, an asynchronous Preset, or an
asynchronous Clear.

Figure 19: Input/Output Block (IOB)

I/O Standard

Input
Ref.
Voltage
(Vref)

Output
Source
Voltage
(Vcco)

Board
Term.
Voltage
(Vtt)

LVTTL (2-24 mA) N/A 3.3 N/A

LVCMOS2 N/A 2.5 N/A

PCI (3V/5V,
33 MHz/66 MHz)

N/A 3.3 N/A

GTL 0.8 N/A 1.2

GTL+ 1.0 N/A 1.5

HSTL Class I 0.75 1.5 0.75

HSTL Class III 0.9 1.5 1.5

HSTL Class IV 0.9 1.5 1.5

SSTL3 Class I
and II

1.5 3.3 1.5

SSTL2 Class I
and II

1.25 2.5 1.25

CTT 1.5 3.3 1.5

AGP-2X 1.32 3.3 N/A

Table 1: Standards Supported by IOB

D

CK

EC

SR
Q

D

CK

EC

SR
Q

D

CK

EC

SR
Q

Programmable
Bias &

ESD Network

Internal
Reference

To Next I/O
To Other

External V Inputs

Programmable
Input Buffer

Programmable
Output Buffer

Programmable
Delay

VCC
OE

SR

O

OCE

I

ICE

IQ

CLK

TCE

T

TFF

OFF

IFF

Vcco

I/O

Vref
11

Spartan-II Development System Tutorial: Introduction to FPGA Technology
Optional pull-up and pull-down resistors and an
optional weak-keeper circuit are attached to
each pad. Prior to configuration all outputs not
involved in configuration are forced into their
high-impedance state. The pull-down resistors
and the weak-keeper circuits are inactive, but in-
puts may optionally be pulled up.

Input Path

A buffer In the IOB input path routes the input
signal either directly to internal logic or through
an optional input flip-flop.

An optional delay element at the D-input of this
flip-flop eliminates pad-to-pad hold time. The de-
lay is matched to the internal clock-distribution
delay of the FPGA, and when used, assures
that the pad-to-pad hold time is zero.

Each input buffer can be configured to conform
to any of the low-voltage signaling standards
supported. In some of these standards the input
buffer utilizes a user-supplied threshold voltage,
Vref. The need to supply Vref imposes con-
straints on which standards can be used in close
proximity to each other.

Output Path

The output path includes a 3-state output buffer
that drives the output signal onto the pad. The
output signal can be routed to the buffer directly
from the internal logic or through an optional
IOB output flip-flop.

The 3-state control of the output can also be
routed directly from the internal logic or through
a flip-flip that provides synchronous enable and
disable.

Each output driver can be individually pro-
grammed for a wide range of low-voltage signal-
ing standards. Each output buffer can source up
to 24 mA and sink up to 48 mA. Drive strength
and slew rate controls minimize bus transients.

In most signaling standards, the output high
voltage depends on an externally supplied Vcco
voltage. The need to supply Vcco imposes con-
straints on which standards can be used in close
proximity to each other.

An optional weak-keeper circuit is connected to
each output. When selected, the circuit monitors
the voltage on the pad and weakly drives the pin
High or Low to match the input signal. If the pin
is connected to a multiple-source signal, the
Trenz Electronic
weak keeper holds the signal in its last state if all
drivers are disabled. Maintaining a valid logic
level in this way helps eliminate bus chatter.

Programmable Routing Matrix

It is the longest delay path that limits the speed
of any worst-case design. Consequently, the
routing architecture and the place-and-route
software have to be defined in a single optimiza-
tion process. This joint optimization minimizes
long-path delays, and consequently, yields the
best system performance.

The joint optimization also reduces design com-
pilation times because the architecture is soft-
ware-friendly. Design cycles are corresponding-
ly reduced due to shorter design iteration times.

Local Routing

The local routing resources, as shown in
Figure 20, provide the following three types of
connections:
• Interconnections among the LUTs, flip-flops,

and General Routing Matrix (GRM)
• Internal CLB feedback paths that provide

high-speed connections to LUTs within the
same CLB, chaining them together with mini-
mal routing delay

• Direct paths that provide high-speed connec-
tions between horizontally adjacent CLBs,
eliminating the delay of the GRM.

General Purpose Routing

Most signals are routed on the general purpose
routing, and consequently, the majority of inter-
connect resources are associated with this level
of the routing hierarchy. The general routing re-
sources are located in horizontal and vertical
routing channels associated with the rows and

Figure 20: Local Routing

CLB

GRM

To
Adjacent

GRM
To Adjacent
GRM

Direct
Connection
To Adjacent
CLB

GRM

To Adjacent
GRM

Direct Connection
To Adjacent

CLB
12

Spartan-II Development System Tutorial: Introduction to FPGA Technology
columns CLBs. The general-purpose routing re-
sources are listed below.
• Adjacent to each CLB is a General Routing

Matrix (GRM). The GRM is the switch matrix
through which horizontal and vertical routing
resources connect, and is also the means by
which the CLB gains access to the general
purpose routing.

• 24 single-length lines route GRM signals to
adjacent GRMs in each of the four directions.

• 96 buffered Hex lines route GRM signals to
other GRMs six blocks away in each one of
the four directions. Organized in a staggered
pattern, Hex lines may be driven only at their
endpoints. Hex-line signals can be accessed
either at the endpoints or at the midpoint
(three blocks from the source). One third of
the Hex lines are bidirectional, while the
remaining ones are unidirectional.

• 12 Longlines are buffered, bidirectional wires
that distribute signals across the device
quickly and efficiently. Vertical Longlines
span the full height of the device, and hori-
zontal ones span the full width of the device.

I/O Routing

Devices may have additional routing resources
around their periphery that form an interface be-
tween the CLB array and the IOBs. This addi-
tional routing, called the VersaRing, facilitates
pin-swapping and pin-locking, such that logic re-
designs can adapt to existing PCB layouts.
Time-to-market is reduced, since PCBs and oth-
er system components can be manufactured
while the logic design is still in progress.

Dedicated Routing

Some classes of signals require dedicated rout-
ing resources to maximize performance. In re-
cent architectures, dedicated routing resources
are provided for two classes of signals:

Figure 21: General Purpose Routing

GRM
6 single
24 hex

12 long
Trenz Electronic
• Horizontal routing resources are provided for
on-chip 3-state busses. Four partitionable
bus lines are provided per CLB row, permit-
ting multiple busses within a row, as shown
in Figure 22.

• Two dedicated nets per CLB propagate carry
signals vertically to the adjacent CLB.

Global Routing

Global Routing resources distribute clocks and
other signals with very high fanout throughout
the device. Recent devices include two tiers of
global routing resources referred to as primary
and secondary global routing resources.
• The primary global routing resources are four

dedicated global nets with dedicated input
pins that are designed to distribute high-
fanout clock signals with minimal skew. Each
global clock net can drive all CLB, IOB, and
block RAM clock pins. The primary global
nets may only be driven by global buffers.
There are four global buffers, one for each
global net.

• The secondary global routing resources con-
sist of 24 backbone lines, 12 across the top
of the chip and 12 across bottom. From
these lines, up to 12 unique signals per col-
umn can be distributed via the 12 longlines in
the column. These secondary resources are
more flexible than the primary resources
since they are not restricted to routing only to
clock pins.

Clock Distribution
Typical FPGA families provide high-speed, low-
skew clock distribution through the primary glo-
bal routing resources described above. A typical
clock distribution net is shown in Figure 23.

Four global buffers are provided, two at the top
center of the device and two at the bottom cen-
ter. These drive the four primary global nets that
in turn drive any clock pin.

Four dedicated clock pads are provided, one ad-
jacent to each of the global buffers. The input to

Figure 22: BUFT Connections to Dedicated
Horizontal Bus Lines

CLB CLB CLB CLB

four 3-state busses
13

Spartan-II Development System Tutorial: Introduction to FPGA Technology
the global buffer is selected either from these
pads or from signals in the general purpose
routing.

Delay-Locked Loop (DLL)
Associated with each global clock input buffer is
a fully digital Delay-Locked Loop (DLL) that can
eliminate skew between the clock input pad and
internal clock-input pins throughout the device.
Each DLL can drive two global clock networks.
The DLL monitors the input clock and the dis-
tributed clock, and automatically adjusts a clock
delay element. Additional delay is introduced
such that clock edges reach internal flip-flops
exactly one clock period after they arrive at the
input. This closed-loop system effectively elimi-
nates clock-distribution delay by ensuring that
clock edges arrive at internal flip-flops in syn-
chronism with clock edges arriving at the input.

In addition to eliminating clock-distribution delay,
the DLL provides advanced control of multiple
clock domains. The DLL provides four quadra-
ture phases of the source clock, can double the
clock, or divide the clock by 1.5, 2, 2.5, 3, 4, 5,
8, or 16. It has six outputs. The DLL also oper-
ates as a clock mirror. By driving the output from

Figure 23: Global Clock Distribution Network

Global Clock
Spine

Global Clock
Column

GCLKPAD2
GCLKBUF2

GCLKPAD3
GCLKBUF3

GCLKBUF1
GCLKPAD1

GCLKBUF0
GCLKPAD0

Global
Clock Rows

DS001_08_060100
Trenz Electronic
a DLL off-chip and then back on again, the DLL
can be used to deskew a board level clock
among multiple Spartan-II devices.

In order to guarantee that the system clock is
operating correctly prior to the FPGA starting up
after configuration, the DLL can delay the com-
pletion of the configuration process until after it
has achieved lock.

Block RAM

Recent FPGA families incorporate several large
block RAM memories. These complement the
distributed RAM Look-Up Tables (LUTs) that
provide shallow memory structures implement-
ed in CLBs. The number of memory blocks de-
pends on the size of the FPGA device, e.g. a
Xilinx XC2S200 device contains 14 blocks total-
ling to 56k bits of memory

Each block RAM cell, as illustrated in Figure 24,
is a fully synchronous dual-ported 4096-bit RAM
with independent control signals for each port.
The data widths of the two ports can be config-
ured independently, providing built-in bus-width
conversion.

Figure 24: Dual-port Block RAM

WEB
ENB
RSTB
 CLKB
ADDRB[#:0]
DIB[#:0]

WEA
ENA
RSTA
 CLKA
ADD[#:0]
DIA[#:0]

DOA[#:0]

DOB[#:0]

RAMB4_S#_S#
14

Spartan-II Development System Tutorial: Introduction to FPGA Technology
Gate count metrics

Introduction

Every user of programmable logic at some point
faces the question: “How large a device will I re-
quire to fit my design?” In an effort to provide
guidance to their users, FPGA manufacturers
describe the capacity of FPGA devices in terms
of “gate counts.” “Gate counting” involves mea-
suring logic capacity in terms of the number of
2-input NAND gates that would be required to
implement the same number and type of logic
functions. The resulting capacity estimates allow
users to compare the relative capacity of differ-
ent FPGA devices.

Xilinx uses three metrics to measure the capaci-
ty of FPGAs in terms of both gate counts and
bits of memory: “Maximum Logic Gates,” “Maxi-
mum Memory Bits”, and “Typical Gate Range”

Maximum Logic Gates

“Maximum Logic Gates” is the metric used to
estimate the maximum number of gates that can
be realized in the FPGA device for a design con-
sisting of only logic functions. (On-chip memory
capabilities are not factored into this metric.)
This metric is based on an estimate of the typi-
cal number of usable gates per configurable log-
ic block or logic cell multiplied by the total num-
ber of such blocks or cells. This estimate, in
turn, is based on an analysis of the architecture
of the logic block and empirical data obtained by
comparing the implementation of entire system-
level designs in the FPGA devices and tradition-
al gate arrays.

The slices of the Spartan-II Series devices each
contain three function generators and two regis-
ters (Figure 16). Additional resources in the
block include dedicated arithmetic carry logic.
Using Table 2 as a guide, the potential gate
count for a single slice can be derived. The table
lists the gate counts for a sampling of logic func-
tions; these gate counts are taken directly from
a typical mask-programmed gate array’s library.)

The function generators are implemented as
memory look-up tables (LUTs); the F and G
function generators are 4-input LUTs, and the H
function generator is a 3-input LUT. Each LUT is
capable of generating any logic function of its in-
puts; thus, in a given application, a 4-input LUT
might be used for any operation ranging from a
Trenz Electronic
simple inverter or 2-input NAND (1 gate) to a
complex function of 4 inputs, such as a 4-input
exclusive-OR (9 gates) or, along with the built-in
carry logic, a 2-bit full adder (9 gates). Similarly,
the registers in the CLB account for anywhere
from 6 to 12 equivalent gates each, dependent
on whether built-in functions such as the asyn-
chronous preset/clear and clock enable are uti-
lized.

Thus, assuming that all three LUTs and both flip-
flops are utilized, a single CLB may hold any-
where from 15 to 48 gates of logic (Table 3). Us-
ing empirical data based on the compilation of
system-level designs, the actual obtainable us-
age is estimated as about 28.5 gates per Spar-
tan-II Series slice.

Of course, in a given application, all the resourc-
es in every CLB will not be utilized. Therefore,

Function Gates

Combinational functions

 2-input NAND 1

 2-to-1 Multiplexer 4

 3-input XOR 6

 4-input XOR 9

 2-bit carry-save full adder 9

Register functions

 D flip-flop 6

 D flip-flop with set or reset 8

 D flip-flop with reset and enable 12

Table 2: Gate Counts for Common Functions

CLB Resource Gate
Range

Gate range per 4-input LUT (2 per slice) 1 to 9

Gate range per 3-input LUT 1 to 6

Gate range per flip-flop (2 per slice) 6 to 12

Total gate range per slice 15 to 48

Estimated typical
number of gates per slice 28.5

Table 3: Capacity ranges for CLB Resources
15

Spartan-II Development System Tutorial: Introduction to FPGA Technology
this metric is a “maximum” in that it assumes
that every CLB is being used. This simple analy-
sis does not take into account the many other
logic resources available in the FPGA architec-
ture, including on-chip three-state buffers, global
clock buffers, global reset, the registers and
multiplexers in the I/O blocks, readback circuitry,
and JTAG boundary scan test circuitry.

Maximum Memory Bits

Some FPGA devices, such as the are capable
of integrating RAM or ROM memory functions
as well as logic functions on chip. This metric,
quite simply, is the maximum number of memory
bits that can be implemented on the device.

The F and G function generators optionally can
be configured as a 32x1 or 16x2 block of asyn-
chronous or synchronous RAM or ROM memo-
ry. Thus the maximum distributed RAM bits are
the number of slices multiplied by 32. In addition
to the distributed RAM, recent FPGA families of-
fers a number of block RAMs, each providing 4k
bits of memory.

Typical Gate Range

FPGA users should realize that there can be
considerable variation in the logic capacity of a
given FPGA device dependent on factors such
as how well the application’s logic functions
match the architecture of the FPGA device, the
efficiency of the tools used to synthesize the log-
ic and map, place, and route the device in the
FPGA, and the skill and experience of the de-
signer. For example, a given design is unlikely
to use every available CLB or logic cell. For this
reason, the “Maximum Logic Gates” metric is
complemented with a “Typical Gate Range” esti-
mate. Based on empirical data, this metric is in-
tended to set realistic expectations by providing
both a “low end” and “high end” estimate of
FPGA capacity.

Most large system-level designs will include
some memory as well as logic functions, and it
is reasonable to assume that some memory
functions would be implemented on an FPGA in
the typical system. FPGA architectures allow
the on-chip integration of memory as well as
logic functions, and the Typical Gate Range ca-
pacity metric takes this capability into account.
In a sea-of-gates gate array, memory functions
require about 4 logic gates per bit of memory.
Thus, each Spartan-II Series slice is capable of
Trenz Electronic
implementing 32x4=128 “gates” of memory
functions.

The low end of the “Typical Gate Range” as-
sumes that all the CLBs are used for logic, with
a utilization of about 18 gates/slice. In addition,
about 10% of the block RAM resources are
used. Table 4 summarizes the calculation for a
Xilinx XC2S200 device.

The high end of the “Typical Gate Range” as-
sumes 20% of the CLBs are used as memory,
and the remaining CLBs are used as logic, with
128 gates/CLB for memory functions and 26
gates/CLB for logic functions. Furthermore, 40%
of the block RAMs are utilized and add to the
capacity. Table 5 summarizes the calculation for
a Xilinx XC2S200 device.

Using Gate Counts as
Capacity Metrics

As long as the metrics used to establish gate
counts are fairly consistent across product fami-
lies, these metrics are useful when migrating be-

Resource Gates

100% Logic:
 1.0 x 1176 CLBs x 2 slices/CLB
 @ 18 gates/slice

42,336

10% of Block Memory:
 0.1 x 14 Blocks x 4096 bits/Block
 @ 4 gates/bit

22,938

Total 65,274

Table 4: XC2S200 Low End of Gate Range

Resource Gates

80% Logic:
 0.8 x 1176 CLBs x 2 slices/CLB
 @ 26 gates/slice

48,922

20% Distributed Memory:
 0.2 x 1176 CLBs x 2 slices/CLB
 @ 128 gates/slice

60,211

40% of Block Memory:
 0.4 x 14 Blocks x 4096 bits/Block
 @ 4 gates/bit

91,750

Total 200,883

Table 5: XC2S200 High End of Gate Range
16

Spartan-II Development System Tutorial: Introduction to FPGA Technology
tween FPGA families, or when applying the ex-
perience gained using one family to help select
the appropriately-sized device in another family.
The gate count metrics also are a good indicator
of relative device capacities within each FPGA
family, although comparing the number of CLBs
or logic cells among the members of a given
family provides a more direct measure of rela-
tive capacity within that family.

Unfortunately, claimed gate capacities are not a
very good metric for comparing the density of
FPGAs from different vendors. There is consid-
erable variation in the methodologies used by
different FPGA manufacturers to “count gates”
in their products. A better methodology for com-
paring the relative logic capacity of competing
manufacturers’ devices is to examine the type
and number of logic resources provided in the
device.

Footprint Compatibility
Lessens Risk

Designers do not always “guess right” when ini-
tially selecting the FPGA family member most
suitable for their design. Thus, “footprint com-
patibility” is an important feature for maximizing
the flexibility of FPGA designs. Footprint com-
patibility refers to the availability of FPGAs of
various gate densities with the same package
and with an identical pinout. When a range of
footprint-compatible devices is available, users
have the ability to migrate a given design to a
higher or lower density device without changing
the printed circuit board (PCB), thereby lowering
the risk associated with initial device selection. If
the selected device turns out to be too small, the
design is migrated to a larger device. If the se-
lected device is too big, the design can be
moved to a smaller device. In either case, with
footprint-compatible devices, potentially expen-
sive and time-consuming changes to the PCB
are avoided.

FPGA Implementation Overhead

Having a gate-count metric for a device, helps to
estimate the overhead created by the program-
mable logic fabric, compared to a standard-cell
ASIC.

First, we calculate the number of configuration
bits required for a single logic slice. The block
RAM bits are excluded from this calculation, as
the block RAM implementation is close to the
Trenz Electronic
ideal implementation and therefore can be di-
rectly compared between ASICs and FPGAs.

Each configuration bit has to be stored in a sin-
gle flip-flop. This flip-flop in turn, controls a spe-
cific attribute of the logic cell’s behavior. Assum-
ing every bit drives a single additional gate is
very conservative.

These gates numbers may be divided by the
typical gates per slice to gain an impression of
the “gates per gates” implementation overhead.
As the feature of distributed RAM is part of the
overhead, we have to take it into account here.

Taking the square root of this result, gives an im-
pression of the overhead in geometric units. The
overhead of 59 implies, that a 0.15-micron
FPGA easily reaches die size parity with a 1.2-
micron standard-cell ASIC.

Resource bits

configuration file size 1,335,840

block RAM bits 57,344

bits used for logic 1,278,496

bits per slice 544

Table 6: Configuration Bits per Slice

Resource bits

configuration storage
 544 bits/slice x 4 gates/bit

2,176

behavior
 544 bits/slice x 1 gate/bit

544

gates per slice 2,720

Table 7: Gates per Slice

Resource gates

gates per slice 2,720

average gates per slice
 0.8 x 26 + 0.2 x 128

46.4

implementation overhead 59

Table 8: Implementation Overhead
17

Spartan-II Development System Tutorial: Introduction to FPGA Technology
Performance Characteristics
According to the data sheets, Spartan-II devices
provide system clock rates up to 200 MHz and
internal performance as high as 333 MHz. This
section provides the performance characteris-
tics of some common functions. Unlike the data
sheet figures, these examples have been de-
scribed in VHDL and ran through the standard
synthesis and implementation tools to achieve
an understanding of the “real world” perfor-
mance.

Table 9 provides pin-to-pin values including IOB
delays; that is, delay through the device from in-
put pin to output pin. In the case of multiple in-
puts and outputs, the worst delay is reported; all
values are reported in MHz.

Description
Pin-to-Pin

(w/ I/O delays)
[MHz]

16-bit Address Decoder 109

32-bit Address Decoder 87

64-bit Address Decoder 74

4:1 MUX 127

8:1 MUX 113

16:1 MUX 99

32:1 MUX 88

Combinatorial
(pad to LUT to pad)

139

Table 9: XC2S200-5 Pin-to-Pin Performance
Trenz Electronic
Table 10 shows internal (register-to-register)
performance. Again, values are reported in
MHz.

For all performance data it should be remem-
bered, that about 50% of the delays are caused
by routing delays. The routing delays are highly
dependent on device utilization and the quality
of the place & route process.

Description Register-to-Register
[MHz]

16-bit Address Decoder 181

32-bit Address Decoder 144

64-bit Address Decoder 124

4:1 MUX 237

8:1 MUX 230

16:1 MUX 180

32:1 MUX 155

Register to LUT to Register 285

8-bit Adder 183

16-bit Adder 175

64-bit Adder 77

64-bit Counter 88

64-bit Accumulator 72

Table 10: XC2S200-5 Register-to-Register
Performance
18

Spartan-II Development System Tutorial: Introduction to FPGA Technology
FPGA design flow

Design Entry
Design Entry is the process of creating the de-
sign and entering it into the development sys-
tem. The following methods are widely used for
design entry:
• HDL Editor
• State Machine Editor
• Block Diagram Editor

Typing a design into an HDL Editor is the most
obvious way of entering high-level languages
like VHDL into the development system. Recent
editors offer functionality like syntax highlighting,
auto completion or language templates to
speed-up design entry. The main advantage of
using an HDL Editor for design entry is, that text
files are simple to share across tools, platforms
and sites. On the other side, text may not be the
most convenient way of editing a design; how-
ever this is highly dependent on the design.

For creating finite state machines, special edi-
tors are available. Using these editors is a con-
venient way of creating FSMs by graphical entry
of bubble diagrams. Most tools create VHDL
from the graphics representation, but hide this
process completely from the user. The main ad-
vantage is, that the graphical representation is
much easier to understand and maintain. On the
other side, sharing a design across tool or plat-
form boundaries may be difficult.

For creating structural designs, block diagram
editors are available. Like FSM editors, these
tools create VHDL or EDIF from the graphical

Figure 25: HDL Editor
Trenz Electronic
representation and hide this process from the
user. Again, the main advantage is, that the
graphical representation is easier to understand
and maintain, with the drawback of a reduced
compatibility across tool or platform boundaries.

Behavioral Simulation

After design entry, the design is verified by per-
forming behavioral simulation. To do so, a high-
level or behavioral simulator is used, which exe-
cutes the design by interpreting the VHDL code
like any other programming language, i.e. re-
gardless of the target architecture. At this stage,
FPGA development is much like software devel-

Figure 26: FSM Editor

Figure 27: Block Diagram Editor
19

Spartan-II Development System Tutorial: Introduction to FPGA Technology
opment; signals and variables may be watched,
procedures and functions may be traced, and
breakpoints may be set. The entire process is
very fast, as the design is not synthesized, thus
giving the developer a quick and complete un-
derstanding of the design. The downside of be-
havioral simulation is, that specific properties of
the target architecture, namely timing and re-
source usage are not covered.

Synthesis
Synthesis is the process of translating VHDL to
a netlist, which is built from a structure of mac-
ros, e.g. adders, multiplexers, and registers.
Chip synthesizers perform optimizations, espe-
cially hierarchy flattening and optimization of
combinational paths. Specific cores, like RAMs
or ROMs are treated as black boxes. Recent
tools can duplicate registers, perform re-timing,
or optimize their results according to given con-
straints.

Post-Synthesis Simulation
After performing chip synthesis, post-synthesis
simulation is performed. Timing information is
either not available, or preliminary based on sta-
tistical assumptions which may not reflect the
actual design. As the design hierarchy is flat-
tened and optimized, tracing signals is difficult.
Due to the mapping of the design into very basic
macros, simulation time is lengthy. When post-
synthesis results differ from behavioral simula-
tion, most likely initialization values have been
omitted, or don’t-cares have been resolved in
unexpected ways.

Implementation
Implementation is the process of translating the
synthesis output into a bitstream suited for a
specific target device. This process consists of
the following steps:
• translation
• mapping
Trenz Electronic
• place & route

During translation, all instances of target-specif-
ic or external cores, especially RAMs and ROMs
are resolved. This step is much like the linking
step in software development. The result is a
single netlist containing all instances of the de-
sign.

During mapping, all macro instances are
mapped onto the target architecture consisting
of LUTs, IOBs, and registers. With this step
completed, the design is completely described
in primitives of the target architecture.

During place & route, all instances are assigned
to physical locations on the silicon. This is usu-
ally an iterative process, guided by timing con-
straints provided by the designer. The process
continues, until the timing constraints are either
met, or the tool fails to further improve the tim-
ing.

Timing Simulation
After implementation, all timing parameters are
known, therefore a real timing simulation may
be performed. Timing simulation is a lengthy
task, as the structure of the silicon including tim-
ing is simulated. Furthermore, it is difficult to cre-
ate testbenches, which exercise the critical tim-
ing paths. For this reason, most designers do
not perform timing simulation, but a combination
of behavioral simulation and static timing analy-
sis.

Static Timing Analysis
Static timing analysis computes the timing of
combinational pathes between registers and
compares it against the timing constraints pro-
vided by the designer. The confidence level of
this method depends on the coverage and cor-
rectness of the timing constraints. However, for
synchronous designs with a single clock do-
main, static timing analysis may render timing
simulation obsolete.
20

Spartan-II Development System Tutorial: Introduction to FPGA Technology
Intellectual Property

What are IP-Cores?
In the terminology of a chip designer, IP-Cores
are building blocks of intellectual property. These
blocks encapsulate specific standard
functionality of a chip in a way much like
standard circuits do on a PCB. The intended use
of IP-Cores is in both FPGA and ASIC type
devices as part of a “system-on-a-chip” design
solution.

Why use IP-Cores?
While semiconductor technology is rapidly
evolving, hardware designers are faced with a
new dimension of problems:
• Increased design effort. Forced by the

embedded revolution with virtually every digi-
tal hardware product using sophisticated,
brand-new and microprocessor controlled
technology, design effort moves quickly
along an upwards spiral.

• Shortened product life cycles. At the same
time, product life cycles are getting shorter,
especially in competitive business areas like
digital consumer products.

• Increased design risk. The obvious answer
to the above facts is to start product develop-
ment earlier than ever before, resulting in
leading-edge product design being started
Trenz Electronic
before standards are fully established. This
in turn dramatically increases design risk.

One solution to address these issues is the use
of IP-Cores. Using IP-Cores adds the following
beneficial properties to development:
• Built-in expert know-how. Building up the

expertise required to successfully master
challenging technology is a time-consuming
task. IP-Cores are designed by experts,
incorporating IP-Cores into your design gives
access to their expert skills.

• Built-in confidence. Testing hardware under
worst-case conditions is another time-con-
suming task. IP-Cores are standard products
which ran through a variety of design-flows,
were evaluated by lots of skilled engineers,
and have been applicated in several state-of-
the-art products. This creates the confidence
of proven functionality.

• Built-in future. IP-Cores are fully documented
modules, which ship with source code and
test bench available. No risk of discontinued
circuits, no problem with rotating employees.
Maintenance of a design is possible- even
years later with a new design team.

• Built-in profession. With standard circuits
being implemented in IP-Cores designers
come back to their real profession as engi-
neers: Concentrating on designing a unique
and distinctive product.
Figure 28: Building a system with IP-Cores

IP-Core

IP-Core

Glue Logic
Value-Added

Function

3rd Party Resources On-Site ResourcesSystem-on-a-Chip
21

Spartan-II Development System Tutorial: Introduction to FPGA Technology
References
• Physical Design for FPGAs

Rajeev Jayaraman
Xilinx, Inc.
April 16, 2001

• FPGAs become a mainstream
ASIC alternative
Shelly Davis, Xilinx
Portable Design Magazine
July 19, 2001

• The Spartan-II Family -
The Complete Package
WP106
Xilinx, Inc
January 10, 2000

• Total Cost of Ownership:
Xilinx FPGAs vs. Traditional ASIC Solutions
WP112
Xilinx, Inc
February 23, 2000

• How Spartan Series FPGAs
Compete for Gate Array Production
XAPP120
Xilinx, Inc
December 2, 1998

• The new Spartan-II
Kiss your ASIC Good-Bye
Xilinx, Inc
November 13, 2000

• Gate Count Capacity Metrics for FPGAs
XAPP059
Xilinx, Inc
February 1, 1997

• Spartan-II 2.5V FPGA Family
Preliminary Product Specification
Xilinx, Inc
October 31, 2000
Trenz Electronic
• Virtex 2.5V Field Programmable Gate Arrays
Preliminary Product Specification
Xilinx, Inc
March 9, 2000

• XC4000E and XC4000X Series
Field Programmable Gate Arrays
Product Specification
Xilinx, Inc
May 14, 1999

• FPGA Praktikum WS2000/2001
Kolja Sulimma
Uni Frankfurt
http://www.em.informatik.uni-frankfurt.de/
~prak/ss01/Woche1/sld001.htm

• What are IP Cores
Trenz Electronic
August 15, 2000

• WebACE
ASIC Cost Estimator
Xilinx, Inc
http://www.xilinx.com/products/webace/
WebAceAppletHolder.html

Copyright
© 2001 Trenz Electronic.

All rights reserved. Reproduction in whole or in
part is prohibited without the written consent of
the copyright owner.

Revision History

Version Date Who Description

1.0 2001nov05 FB Created

Table 11: Revisions History
22

	Electronic design with FPGAs
	Custom Logic Options
	Industry Dynamics & Time-to-Market
	Moore’s Law and the Deep Submicron Era
	FPGA Usage
	Case Studies

	FPGA technology in detail
	General Overview
	Configurable Logic Block
	Input/Output Block
	Programmable Routing Matrix
	Clock Distribution
	Block RAM
	Gate count metrics
	Performance Characteristics

	FPGA design flow
	Design Entry
	Behavioral Simulation
	Synthesis
	Post-Synthesis Simulation
	Implementation
	Timing Simulation
	Static Timing Analysis

	Intellectual Property
	What are IP-Cores?
	Why use IP-Cores?

	References
	Copyright
	Revision History

