
Working with the GODIL

Author: Ruud Baltissen
Credits: Michael Randelzhofer, Ed Spittles

Date: August 2010

What is it?
This document describes a way to get familiar with the Xilinx FPGAs on OHO’s Godil,
especially the XC3S500E and the software to program it: ISE Webpack.

Why?
I was always interested in upgrading my Commodore computers in way or another. On
http:/forum.6502.org I asked if it would be possible to design an FPGA replacement for the
6502 processor. BigEd pointed me to the GODIL.
But being a newbie to programming FPGAs and only having a tiny bit of experience working
with VHDL this meant I had a lot to learn. I looked for a kind of “GODIL for dummies” but
that was not to be found. So I decided to write one using my own experiences.

What do you need?
Beside the GODIL you need the ISE Webpack from Xilinx. It is free but you need to register.
Xilinx can also provide you with various tutorials. Again you need to be registered to get
them. The tutorial I used as base for this document is ise_tutorial_ug695.pdf which goes
with version 12.1 of the software.

Let’s go!
After starting the software we have to create a new project using the New Project Wizard.
This is done by:
 1. From Project Navigator, select File > New Project. The New Project Wizard appears.

 2. In the Location field, browse to the directory where you want your projects. You have to
know that Webpack will create a directory with the name of your project.

 3. In the Name field, enter the name of your project.

 4. Verify that HDL is selected as the Top-Level Source Type, and click Next. The New
Project Wizard—Device Properties page appears.

 5. Select the following values in the New Project Wizard—Device Properties page:
 ♦ Product Category: All
 ♦ Family: Spartan3E
 ♦ Device: XC3S500E (or whatever is on the board)
 ♦ Package: VQ100
 ♦ Speed: -4
 ♦ Synthesis Tool: XST (VHDL/Verilog)

 ♦ Simulator: ISim (VHDL/Verilog)
 ♦ Preferred Language: VHDL-93
 Other properties can be left at their default values.

 6. Click Next, then Finish to complete the project creation.

Next step is to add the source files to the project. I used the VHDL files provided by OHO-
Elektronik as base. To make sure that I indeed reprogrammed the GODIL at the end, I
changed the original demo program a bit: I replaced the shown numbers 1, 2 and 3 by 9, 7
and 5. If you don’t have a LED display, simply switch the two LEDs.

You now need to add the three source files to the project as follows:

 1. Select Project > Add Source.

 2. Select the following files from the project directory, and click Open.
 ♦ Demo_Dy1.vhd
 ♦ Oho_Dy1.vhd
 ♦ OhoPack.vhd

 3. In the Adding Source Files dialog box, verify that the files are associated with All , that
the associated library is work , and click OK .

 4. In the Processes pane, open Synthesize – XST by clicking the boxed + in front of it.

 5. Now double-click Check Syntax. Verify that the syntax check passes successfully: a green
circle with a white V in it should appear as sign that things went well.

We now enter the synthesis options:

 1. In the Hierarchy pane of the Project Navigator Design panel, select your VHD file, in my
case I kept the original name: demo_dy1.vhd

 2. In the Processes pane, right-click Synthesize - XST, and select Process Properties.

 3. Under the Synthesis Options tab, set the Netlist Hierarchy property to a value of
Rebuilt.

 4. Click OK .

 5 In the Processes pane, double-click Synthesize - XST.

At this moment I don’t know if this part is needed but the PDF says at the end that a NGC file
has been created and I don’t know if that one is needed in future. But it only takes a few
seconds so no problem IMHO.

 1. Double-click View RTL Schematic.

 2. If the Set RTL/Technology Viewer Startup Mode dialog appears, select Start with the
Explorer Wizard .

 3. In the Create RTL Schematic start page, select demo_dy1 from the Available Elements
list, and then click the Add button to move the selected items to the Selected Elements list.

 4. Click Create Schematic (bottom-right).

Next step is to add Demo_Dy1.ucf to the project in the same way you added the three VHDL
files previously.

Top-left you see View: O Implementation O Simulation. Make sure Implementation is
selected.

Next we have to do some more settings. I went to these steps several times and in all cases the
settings were already set as described in the PDF. But we go through it just to be sure.

 1. Right-click the Implement Design process, and select Process Properties.

 2. Ensure that you have set the Property display level (bottom-middle) to Advanced.

 3. Click the Place & Route Properties category.

 4. Change the Place & Route Effort Level (Overall) to High.

 5. Click OK .

The next part is Creating Timing Constraints. Here you have to expand User Constraints
and to double-click Create Timing Constraints. Here I was asked if an UCF had to be
inserted and I clicked Yes. Then I was told that I had to do something about the “m49” clock
signal. Double-clicking the one at top-middle and just clicking OK in the screen that then
popped up, did the trick (but I don’t know why yet).
Now close the pane and answer Yes to the question if the altered UCF file has to be changed.

A tip: rename the original UCF file and use this new one as base for future use.

According Xilinx’s PDF, now you have to expand User Constraints, and double-click I/O
Pin Planning (PlanAhead) - Post-Synthesis. This starts up the PlanAhead software. This can
take a few moments. Next I closed both screens.

Next step is to double-click Implement designs.

Next step is to create the Configuration data.

1. In the Processes pane, right-click Generate Programming File, and select Process
Properties.

 2. In the dialog box, click the Startup Options category.

 3. Change the FPGA Start-Up Clock property from CCLK to JTAG Clock .

 4. Click OK .

 5. Double-click Generate Programming File.

Next step is to generate the PROM file.
 1. Expand Configure Target Device, and double-click Generate Target PROM/ACE File.
A screen appears, just click OK .

 2. In iMPACT, double-click on Create PROM File (PROM File Formatter) in the
iMPACT Flows window.

 3. In the PROM File Formatter window, select SPI Flash/Configure Single FPGA in the
Select Storage Target section.

 4. Click the green arrow to activate the next section.

 5. In the Add Storage Device(s) section, select 32M for Storage Device (bits).

 6. Click Add Storage Device.

 7. Click the green arrow to activate the next section.

 8. In the Enter Data section, enter an Output File Name: demo_dy1.

 9. Verify that the Checksum Fill Value is set to FF and the File Format is MCS.

 10. Check the Output file location. If you have started a new project, it still points to the
directory of the previous project.

 11. Click OK to close the PROM File Formatter.

 11. In the Add Device dialog box, click OK .

 12. Select the demo_dy1.bit file.

 13. Click No when you are asked if you would like to add another design file to Revision: 0.

 14. Click OK to complete the process.

 13. Select the Xilinx device graphic in the workspace area, then in the iMPACT Processes
view, double-click Generate File. The Generate Succeeded message should appear.

 14. Close iMPACT by selecting File > Exit.

 15. If prompted to save the file, click Yes.

 16. Enter a file name: demo_dy1.

Next step: using iMPACT . This involves connecting the GODIL to your PC. I used an USB-
JTAG cable. Make sure you connect the flatcable in the right way because it took me valuable
time to find out why things didn’t work as they should! Simply have a good look at the
picture in chapter 3.2.
FYI: I placed the GODIL on two headers on a left over piece of experiment board and
powered it up by soldering a surplus USB cable to the board and using my PC as power
supply.
I started iMPACT up as said in the PDF, opened project demo_dy1.ipf and clicked the gray
area under “iMPACT Flows” at the top left. This pops up the little menu you see before you
opened the project. The window mentioned in the PDF does not show up (as the PDF
mentions as a possibility) but the menu doesn’t show up either; I just found out by pure luck.
Double-click Boundary Scan and right-click the big field (as it says itself).

 1. Choose Cable Auto Select to let iMPACT find out what cable you have (worked fine for
me).

 2. Now select Initialize Chain . In the graphic part a Xilinx IC will appear.

 3. And a screen will appear, asking if you want to continue and assign configuration file(s).
Answer Yes.

 4, Choose demo_dy1.bit.

 5. A screen will appear saying that this device supports attached Flash PROMs. Do you want
to attach an SPI or BPI PROM to this device? Answer Yes.

 6. Choose demo_dy1.mcs.

 7. Choose SPI PROM and M25P32. Choose OK .

 8. Just click OK in the next screen.

 9. Make sure the FPGA is selected.

10. Now double-click Program at middle-left.

The programming will only take a moment and the GODIL now behaves according the new
program. But this program is not stored permanently in the EEPROM. Power the GODIL off
and on again and you will see that the old program is back again.
To store it permanently, make sure that you select the EEPROM at step 9. In my case the
programming took 23 seconds.

I found out about the above behaviour by accident and AFAIK it isn’t mentioned in the PDF.
Programming only the FPGA has two advantages:
1) You save about 21 seconds waiting time.

2) Although you can reprogram the EEPROM over 10000 times, it is still a limit. In this way
you can enjoy your GODIL a very long time.

I hope this document is the start of a long time of fun with the GODIL. If you have comment
about this document, don’t hesitate to email me: Ruud@Baltissen.org.

I have the intention to expand this document with experiences of users and links to working
projects where other users can benefit from. So please share your experiences and, if possible
of course, your work. Many thanks in advance!

Kind regards, Ruud Baltissen

