
1

Dünner Kirchweg 77
32257 Bünde
Germany
www.trenz-electronic.de

Introduction
The Spartan-II Development System is de-
signed to provide a simple yet powerful platform
for FPGA development, which can be easily ex-
panded to reflect your application’s require-
ments.

The following application note was developed to
give the engineer a quick hands-on experience,
and to demonstrate the board’s features and
their application.

General Overview
The TE-BL Expansion Board provides a set of
standard functionality which is commonly used
by most applications:
• 7-segment displays
• LEDs
• Push buttons
• VGA output
• USB type “B” receptacle
• 48MHz oscillator

To speed-up application development, a stan-
dard VHDL module (entity tebl) was created, en-
capsulating the following functions:
• encoding of 7-segment displays
• multiplexing of LEDs
• debouncing of push buttons.
• emulation of switches
• generation of VGA timing
• encoding of USB signals

Based on the above mentioned VHDL module,
this application note describes a simple design,
demonstrating the following tasks:
• using the 7-segment displays
• using the LEDs
• using the push buttons
• emulating switches
• using the VGA output

Furthermore, the underlying principles are brief-
ly explained, for reference purposes.

Figure 1: TE-XC2S Base Board with TE-BL Expansion.

Spartan-II
Development System

2002-May-4 Application Note: Buttons & Lights



Spartan-II Development System Application Note: Buttons & Lights

2 2002-May-4

Architectural Description
As most of the functionality is contained in the
readily provided module tebl, only very few addi-
tional files are required to implement this appli-
cation note. Figure 2 visualizes the design
hierarchy.

Figure 2: Design hierarchy

Entity core
The entity core implements the application
note’s specific functionality:
• display push button signals on 

7-segment displays
• display switch signals on

7-segment displays and LEDs
• create test pattern on VGA output

To implement this functionality, less than 10
lines of VHDL code are required. To make
things even easier to understand, we used the
schematic shown in Figure 3.

Figure 3: Entity core

push buttons
To display the state of the push buttons on the
7-segment displays, only a single line of VHDL
code is required:

disp(7 downto 0)<= pb;

The entity tebl takes care of button de-multiplex-
ing and de-bouncing, so that the signal pb may

be used to control further logic directly. Figure 4
details this functionality.

Figure 4: Debouncing push buttons

Furthermore, the entity tebl performs the 7-seg-
ment decoding and display multiplexing, so that
the value assigned to disp[] is displayed in hexa-
decimal. See Table 1 for further details.

switches

To emulate switches using the push buttons and
display the status of the switches on the 7-seg-
ment displays and LEDs, only two lines of VHDL
code are required:

disp(15 downto 8)<= sw;

led<= sw;

buf8

core

fpga

tebl

disp[3:0]
disp[7:4]
disp[11:8]
disp[15:12]

U5
U6
U7
U8

disp[3:0]
disp[7:4]
disp[11:8]
disp[15:12]

U5
U6
U7
U8

0000 1000

0001 1001

0010 1010

0011 1011

0100 1100

0101 1101

0110 1110

0111 1111

Table 1: 7-segment decoding

button

pb[7:0]

button is 
pressed

button is 
released

debounced 
signal

button 
bounces for 
about 1 ms



Spartan-II Development System Application Note: Buttons & Lights

3 2002-May-4

The entity tebl performs the emulation of the
switching functionality, see Figure 5 for further
details.

Figure 5: Emulating switches

Using schematics, things look slightly different.
The pb[] and sw[] busses need to be renamed,
so that they may be combined to form the led[]
bus. To rename the signals, a symbol buf8 was
created, which is just copying its input to its out-
put. The synthesizer will not create any logic
from this symbol. See Figure 6 for further de-
tails.

Figure 6: buttons & switches schematic

VGA test pattern

Displaying a simple test pattern on a VGA moni-
tor requires another four lines of VHDL code:

vr<= vcol(8);

vg<= vcol(7);

vb<= vcol(6);

vi<= vrow(8);

The entity tebl performs the generation of the
VGA timing, takes care of the blanking and pro-
vides row and column info to the application.
The application in turn provides the RGB tuple
plus an additional intensity signal to tebl. With a
video resolution of 640x480 pixels, the lines
above create the pattern illustrated by Figure 7.

Figure 7: VGA test pattern

Again, with schematics things look slightly differ-
ent. Here we used the predefined buf symbol to
be able to rename the signals as required. See
Figure 8 for further details.

Figure 8: VGA schematic

Creating VGA images is a complex task. There-
fore we created a dedicated application note for
in depth coverage of this topic: The Game of
Life.

To make sure, the schematic is properly com-
piled according to the design-rule-check, un-
used signals need to be assigned. We used
some buf and gnd symbols to do so, as Figure 9
details.

Figure 9: unused signals

button

sw[7:0]

button is 
pressed once

button is 
pressed again

switch is 
activated

switch is 
released



Spartan-II Development System Application Note: Buttons & Lights

4 2002-May-4

Entity fpga
The entity fpga is the top level of the design. It
performs the following functions:
• create a reset signal
• lock all I/Os to their pad locations
• specify timing constraints

While Xilinx recommends to assign design con-
straints using the Constraints Editor, this appli-
cation note uses VHDL attributes to pass the
constraints to the implementation tools. This is
especially useful for the novice user, as the de-
sign contains less files and is more consistent.
The mechanism used here was proven with Xil-
inx’ WebPACK ISE 4.1WP3.x. In case your tool
chain does not support this mechanism, the
constraints me be additionally entered into a .ucf
file.

Reset-on-Configuration
The following code excerpt demonstrates cre-
ation of a reset signal, which is automatically
generated on FPGA configuration. It utilizes the
Xilinx’ standard library UNISIM and the ROC
component contained herein.

library UNISIM;
use UNISIM.VCOMPONENTS.all;

entity FPGA is
...

end FPGA;

architecture XILINX of FPGA is
signal RST : STD_LOGIC;
...

begin
U2 : ROC port map(O=> rst);
...

end XILINX;

Pin locking
The following code excerpt demonstrates the
specification of pad locations in a VHDL file:

entity FPGA is
port(

clk_a1 : in STD_LOGIC;
iop_a1 : out STD_LOGIC;
...

);

attribute LOC: string;
attribute LOC of clk_a1:

signal is "P185";

attribute LOC of iop_a1:

signal is "P191";

end FPGA;

Notice, that the attribute is assigned within the
entity declaration, not within the architecture
body.

Timing constraints

Timing constraints are required to notify the im-
plementation tools about the speed of the imple-
mented circuits. This is important to ensure, that
the design works at the desired clock speed.

The following code snippet demonstrates the
specification of timing constraints within a VHDL
file:

architecture XILINX of FPGA is

signal clk25 : STD_LOGIC;

attribute PERIOD: string;

attribute PERIOD of clk25:

signal is "24MHz";

...

begin

...

end XILINX;

In addition to specifying the constraints in the
VHDL code, you need to enable timing con-
straints in the synthesis properties. See
Figure 10 for a screenshot.

Figure 10: synthesis properties

The mechanism described here was tested with
the Xilinx XST synthesizer. Other tools may use
different mechanism to pass attributes from
VHDL to the backend tools. You should check
your place&route report, and verify that the con-
straints have been passed through the tool
chain.



Spartan-II Development System Application Note: Buttons & Lights

5 2002-May-4

Entity tebl
The entity tebl is provided as VHDL source code
and extensively commented. It is left up to the
interested engineer, to review this source.

Project files
The project files for this application note are pro-
vided in WebPACK ISE format with all synthesis
options set up to achieve a push button flow.
Furthermore, the resulting .mcs file to program
the Flash PROM and a .bit file to program the
FPGA via JTAG are provided.

To answer questions regarding synthesis, imple-
mentation and download of projects, our Tutorial
on WebPACK ISE is highly recommended.

References
• Spartan-II Development System

Product Specification
Trenz Electronic
September 12, 2001

• Spartan-II Development System
Tutorial on WebPACK ISE
Trenz Electronic
September 2001

• Spartan-II Development System
Application Note: Game of Life
Trenz Electronic
September 20, 2001

Revisions History

Version Date Who Description

1.0 2001sep15 FB Created

1.1 2002may04 FB ISE 4.2

Table 2: Revisions History


	Introduction
	General Overview
	Architectural Description
	Entity core
	Entity fpga
	Entity tebl

	Project files
	References
	Revisions History

