

Trenz Electronic GmbH

info@trenz-electronic.de www.trenz-electronic.de

Rev. 1.0 as of 2005-01-22

User's Manual

Cyclone Board

## **Overview**

This small, but powerful Altera FPGA platform is designed for SoC (System-On-Chip) solutions. To ensure maximum flexibility, two banks of SRAM, conventional Flash and a large NAND-Flash are integrated on-board.

Combined with peripherals like clock oscillator, watchdog and RS-232 serial port, the Cyclone Micromodule is fully compatible to the JOPcore (Java-Optimized-Processor) HDL design and forms a powerful Java platform for your application.

As a small-sized module, it can be combined with our ready-to-use base boards, or as a design-in of a complete Java processor system.

## **Features**

- Altera Cyclone EP1C6Q240 or EP1C12Q240 FPGA
- 512 KByte FLASH (for FPGA configuration and program code)
- 1 MByte fast SRAM (2 x 256K x 16)
- 32 MByte NAND FLASH
- ByteBlasterMV port
- Watchdog with LED
- EPM7064 PLD (loads FPGA config from FLASH on watchdog reset)
- Voltage regulator (1.5 V output)
- 20 MHz Quartz oscillator (up to 640 MHz internal clock generated by PLL)
- RS-232 serial interface (MAX3232)
- 56 general purpose IO pins
- Small board size (60mm x 48mm)



Figure 1: Cyclone Module (component side)

## Details



(solder side)

### **Power Supply**

A regulated 3.3V supply on pin 1 and 2 of connector JM1 is necessary to supply power to the board. Polarity and magnitude of the power source must be carefully adjusted when connected to the board.

Note: Wrong power supply to the 3.3 Volt inputs may cause damage to the module!

An on-board voltage regulator generates the 1.5 V FPGA core supply.

### **Clock supply**

A 20MHz clock signal is available produced by a crystal clock oscillator. The Cyclone FPGA is featured with two programmable PLLs which can generate output frequencies of up to 640MHz.

Generation of a PLL model is eased by a configuration wizard incorporated in Altera's Quartus design software. Open the MegaWizard Plug-in Manager in menu 'Tools', choose appropriate PLL and type in the parameter dialog.

#### **Memory Subsystem**

The memory hierarchy consists of:

- Two 512kB SRAMs (A & B) (CY7C1041CV, Cypress Semiconductors)
- 512kB conventional Flash (AM29LV, AMD)
- 32MB NAND Flash (TC58DVM82AF1FT, Toshiba)

In order to gain maximum bandwidth and reduce reflections, minimal trace lengths are used between FPGA and the SRAM.

Table 1 provides an overview of the different address bus and data path sized to the memory subsystem.

|            | Addressbus | Databus  |
|------------|------------|----------|
| SRAM A/B   | A0 - A17   | D0 - D15 |
| Flash      | A0 - A18   | D0 - D7  |
| NAND-Flash | A0: CLE    | D0 - D7  |
|            | A1: ALE    |          |

#### Table 1:Bus System

There are different control lines for each component, so that is possible to implement two independent CPUs. Both Flash memories share the same write and read enable signals.

|                | Control Signals | Pin |
|----------------|-----------------|-----|
| SRAM A         | RAMA_NCS        | 78  |
|                | RAMA_NOE        | 73  |
|                | RAMA_NWE        | 105 |
|                | RAMA_NLB        | 77  |
|                | RAMA_NUB        | 75  |
| SRAM B         | RAMB_NCS        | 223 |
|                | RAMB_NOE        | 228 |
|                | RAMB_NWE        | 196 |
|                | RAMB_NLB        | 224 |
|                | RAMB_NUB        | 226 |
| Flash          | FL_NCS          | 37  |
|                | FL_NOE          | 24  |
|                | FL_NWE          | 15  |
| NAND-<br>Flash | FL_NCS2         | 23  |
|                | FL_RDY          | 29  |
|                | FL_NOE          | 24  |
|                | FL_NWE          | 15  |

#### **Table 2: Control Lines**

## **Serial Interface**

A MAX3232 transceiver is added for RS-232 compliant COM interface. The following signals are provided on the FPGA.

| Signal   | Pin | Dir. (FPGA) |
|----------|-----|-------------|
| SER_TXD  | 178 | OUT         |
| SER_NRTS | 177 | OUT         |
| SER_RXD  | 153 | IN          |
| SER_NCTS | 28  | IN          |

Table 3: RS-232 Signals

### Watchdog

Because this board is developed for SoC applications, a MAX823 watchdog timer is added. This device is directly connected to the PLD to trigger download of the configuration to the FPGA. The watchdog input and the LED are connected to the signal WD on Pin 166. If this pin remains either high or low for longer than 1.6s, a reset is generated. To disable this function, change the PLD configuration.

## ByteBlasterMV port

The CPLD and FPGA are connected to this configuration port. Connect the ByteBlaster to the parallel port of your PC and use the JTAG mode to download the configuration to the device.



### Figure 3: Connecting Programmer

| Signal | Pin |
|--------|-----|
| ТСК    | 1   |
| GND    | 2   |
| TDO    | 3   |
| VCC    | 4   |
| TMS    | 5   |
| VCC    | 6   |
| пс     | 7   |
| пс     | 8   |
| TDI    | 9   |
| GND    | 10  |

Table 4: ByteBlaster port

### CPLD

To use the Flash for FPGA configuration storage a device is needed to download the data from memory to FPGA. This is done by the CPLD, if it's programmed with the provided file and when a watchdog reset occurs. This file is placed at

...quartus\cycconf\cyc\_conf.pof

of the project tree. A dummy file called *cyc\_conf\_init.pof* exists to retract automatic configuration by reprogramming the CPLD.

## **FPGA Programming from Flash**

To download the FPGA configuration into Flash a program running on JOP that uses the serial interface has to be loaded first. The following steps are necessary:

- 1. configure the FPGA over ByteBlaster port
- 2. download a program over serial line
- 3. download the configuration file over serial line to the Flash
- 4. configure CPLD for automatic loading

To simplify this procedure unzip the file *program.zip*, copy the *.ttf* file of your design into this directory and execute the batchfile by typing:

program your\_design.ttf COM1

Prior to the download, connect the board to the PC with the ByteBlaster and the serial RS-232 interface.

## IO's

There are 56 user-defined IOs in addition to the serial lines and the power supply available. See the pin assignment in Table 5 for details. The pins are numbered from top to bottom and from left to right.

To allocate the pin names use the tcl script cypins.tcl in Quartus.

**Warning**: Cyclone FPGA IOs are not 5V tolerant! Applying 5V to any pin may cause severe damage to the device.

| Location | Pin<br>(JM1) | Signal | Pin<br>(FPGA) |
|----------|--------------|--------|---------------|
|          | 1            | +3.3V  | -             |
|          | 2            | GND    | -             |
|          | 3            | IO_L1  | 2             |
|          | 4            | IO_L2  | 3             |
|          | 5            | IO_L3  | 4             |
|          | 6            | IO_L4  | 5             |
|          | 7            | IO_L5  | 6             |
|          | 8            | IO_L6  | 7             |
|          | 9            | IO_L7  | 8             |
|          | 10           | IO_L8  | 11            |
|          | 11           | IO_L9  | 12            |
| l off    | 12           | IO_L10 | 13            |
| Leit     | 13           | GND    | -             |
|          | 14           | IO_L11 | 38            |
|          | 15           | IO_L12 | 39            |
|          | 16           | IO_L13 | 41            |
|          | 17           | IO_L14 | 42            |
|          | 18           | IO_L15 | 43            |
|          | 19           | IO_L16 | 53            |
|          | 20           | IO_L17 | 54            |
|          | 21           | IO_L18 | 55            |
|          | 22           | IO_L19 | 56            |
|          | 23           | IO_L20 | 57            |
|          | 24           | GND    | -             |
|          | 25           | IO_B1  | 58            |
|          | 26           | IO_B2  | 59            |
|          | 27           | IO_B3  | 60            |
| Bottom   | 28           | GND    | -             |
| BULLOITI | 29           | IO_B4  | 61            |
|          | 30           | IO_B5  | 62            |
|          | 31           | IO_B6  | 120           |
|          | 32           | IO B7  | 121           |

| Location | Pin<br>(JM1) | Signal | Pin<br>(FPGA) |
|----------|--------------|--------|---------------|
|          | 33           | GND    | -             |
| Bottom   | 34           | IO_B8  | 122           |
|          | 35           | IO_B9  | 123           |
|          | 36           | IO_B10 | 124           |
|          | 37           | GND    | -             |
|          | 38           | IO_R1  | 176           |
|          | 39           | IO_R2  | 175           |
|          | 40           | IO_R3  | 174           |
|          | 41           | IO_R4  | 173           |
|          | 42           | IO_R5  | 170           |
|          | 43           | IO_R6  | 169           |
|          | 44           | GND    | -             |
|          | 45           | IO_R7  | 168           |
|          | 46           | IO_R8  | 167           |
|          | 47           | IO_R9  | 163           |
| Right    | 48           | IO_R10 | 162           |
|          | 49           | IO_R11 | 161           |
|          | 50           | IO_R12 | 160           |
|          | 51           | IO_R13 | 159           |
|          | 52           | GND    | -             |
|          | 53           | IO_R14 | 140           |
|          | 54           | IO_R15 | 138           |
|          | 55           | IO_R16 | 136           |
|          | 56           | IO_R17 | 134           |
|          | 57           | IO_R18 | 132           |
|          | 58           | IO_R19 | 128           |
|          | 59           | IO_R20 | 126           |
|          | 60           | GND    | -             |
|          | 61           | IO_T1  | 1             |
|          | 62           | IO_T2  | 240           |
|          | 63           | IO_T3  | 239           |
| Тор      | 64           | GND    | -             |
|          | 65           | IO_T4  | 181           |
|          | 66           | IO_T5  | 180           |
|          | 67           | IO_T6  | 179           |

| Location | Pin<br>(JM1) | Signal     | Pin<br>(FPGA) |
|----------|--------------|------------|---------------|
|          | 68           | TXD (OUT)  | -             |
|          | 69           | NRTS (OUT) | -             |
| Тор      | 70           | RXD (IN)   | -             |
|          | 71           | NCTS (IN)  | -             |
|          | 72           | GND        | -             |

### Table 5: Pin assignment

# **Ordering Details**

## **Package contents**

- Cyclone Board
- Documentation CD-ROM

### **Order number**

The order number is: TE0180-00

# History

| Rev. | Date       | Who | Description |
|------|------------|-----|-------------|
| 0.9  | 2004-12-15 | TS  | Created     |
| 1.0  | 2005-01-22 | FST | Revised     |

Table 6: History