
UG 650 April 15, 2009 www.xilinx.com 1

© 2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of
designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation
in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion,
to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES,
WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF
DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

ls

Summary This document describes the Embedded Development Kit (EDK) port of the open source
lightweight IP (lwIP) TCP/IP stack. The lwIP provides an easy way to add TCP/IP-based
networking capability to an embedded system.

The lwip130_v1_00_b library provides adapters for the xps_ethernetlite and
xps_ll_temac Xilinx® Ethernet MAC cores, and is based on the lwIP stack version 1.3.0.
This document describes how to use the lwip130_v1_00_b library to add networking
capability to embedded software. It contains the following sections:

“Overview”

“Features”

“Additional Resources”

“Using lwIP”

“Setting up the Hardware System”

“Setting up the Software System”

“lwIP Performance”

“Known Issues and Restrictions”

“Migrating from lwip_v3_00_a to lwip130_v1_00_b”

“API Examples”

“Software APIs”

“Appendix A: lwIP Source Documentation”

Overview The lwIP is an open source TCP/IP protocol suite available under the BSD license. The lwIP is
a standalone stack; there are no operating systems dependencies, although it can be used
along with operating systems. The lwIP provides two APIs for use by applications:

RAW API: Provides access to the core lwIP stack.

Socket API: Provides a BSD sockets style interface to the stack.

The lwip130_v1_00_b is an EDK library that is built on the open source lwIP library version
1.3.0. The lwip130_v1_00_b library provides adapters for the Ethernetlite
(xps_ethernetlite) and the TEMAC (xps_ll_temac) Xilinx EMAC cores. The library can
run on MicroBlaze™, PowerPC® 405, or PowerPC 440 processors.

UG 650 April 15, 2009

lwIP 1.3.0 Library (v1.00.b)
R

Features

UG 650 April 15, 2009 www.xilinx.com 2

R

Features The lwIP provides support for the following protocols:

Internet Protocol (IP)

Internet Control Message Protocol (ICMP)

User Datagram Protocol (UDP)

TCP (Transmission Control Protocol (TCP)

Address Resolution Protocol (ARP)

Dynamic Host Configuration Protocol (DHCP)

Additional
Resources

lwIP wiki: http://lwip.wiki.com

Xilinx lwIP designs and application examples:
http://www.xilinx.com/support/documentation/application_notes/xapp1026.pdf
lwIP examples using RAW and Socket APIs: http://savannah.nongnu.org/projects/lwip/

Multi-Port Memory Controller (MPMC) Data Sheet: available in the following directory of
your software installation:
EDK\hw\XilinxProcessorIPLib\pcores\mpmc_v*_00_a

Using lwIP The following sections detail the hardware and software steps for using lwIP for networking in
an EDK system. The key steps are:

1. Creating a hardware system containing the processor, ethernet core, and a timer. The
timer and ethernet interrupts must be connected to the processor using an interrupt
controller.

2. Configuring the lwip130_v1_00_b library to be a part of the software platform. For lwIP
socket API, the Xilkernel library is a pre-requisite.

Setting up the
Hardware
System

This section describes the hardware configurations supported by lwIP. The key components of
the hardware system include:

Processor: either a PowerPC (405 or 440) processor or a MicroBlaze processor.

EMAC: lwIP supports xps_ethernetlite and xps_ll_temac EMAC cores

Timer: to maintain TCP timers, lwIP requires that certain functions are called at periodic
intervals by the application. An application can do this by registering an interrupt handler
with a timer.

DMA: the xps_ll_temac core can be configured with an optional Soft Direct Memory
Access (SDMA) engine

The following figure shows a system architecture in which the system is using an
xps_ethernetlite core.

The system has a processor connected to a Multi-Port Memory Controller (MPMC) with the
other required peripherals (timer and ethernetlite) on the PLB v4.6 bus. Interrupts from both the
timer and the ethernetlite are required, so interrupts are connected to the interrupt controller.

Setting up the Hardware System

UG 650 April 15, 2009 www.xilinx.com 3

R

When using TEMAC, the system architecture changes depending on whether DMA is required.
If DMA is required, a fourth port (of type SDMA), which provides direct connection between the
TEMAC (xps_ll_temac) and the memory controller (MPMC), is added to the memory
controller. The following figure shows this system architecture.

Note: There are four interrupts that are necessary in this case: a timer interrupt, a TEMAC interrupt, and
the SDMA RX and TX interrupts. The SDMA interrupts are from the Multi-Port Memory Controller (MPMC)
SDMA Personality Interface Module (PIM). Refer to the Multi-Port Memory Controller (MPMC) Data Sheet
for more information.

Figure 1: System Architecture using xps_ethernetlite Core

Figure 2: System Architecture using xps_ll_temac Core (with DMA)

CPU:
MicroBlaze or

PowerPC
xps_intc

IRQ

MPMC xps_ethernetlite

PLBv46

Timer Interrupt

EMAC Interrupt

xps_timer

X11003

CPU:
MicroBlaze or

PowerPC
xps_intc

IRQ

PLBv46

TEMAC Interrupt

SDMA Rx and

Tx Interrupt

Timer Interrupt

X11004

xps_ll_temac xps_timerMPMC

S
D
M
A

Setting up the Software System

UG 650 April 15, 2009 www.xilinx.com 4

R

If the TEMAC is used without DMA, a FIFO (xps_ll_fifo) is used to interface to the TEMAC.
The system architecture in this case is shown in the following figure.

Setting up the
Software
System

To use lwIP in a software application, you must first compile the library as part of your
application software platform. To set up the lwIP library in XPS:

1. Open the Software Platform Settings dialog box.

2. Enable lwIP in the Library/OS Settings tab. (For Socket API, Xilkernel must be the OS,
configured with semaphores, mutexes, and yield functionality available).

3. Select Generate Libraries and BSPs to regenerate the library.

4. Link the application with the -l lwip4 linker flag. (For socket API, add -l xilkernel.)

Configuring lwIP Options

The lwIP provides configurable parameters. The values for these parameters can be changed
using the Software Platform Settings dialog box. There are two major categories of
configurable options:

Xilinx Adapter to lwIP options: These control the settings used by Xilinx adapters for the
xps_ethernetlite and xps_ll_temac cores.

Base lwIP options: These options are part of lwIP library itself, and include parameters for
TCP, UDP, IP and other protocols supported by lwIP.

The following sections describe the available lwIP configurable options.

Figure 3: System Architecture using TEMAC with xps_II_fifo (without DMA)

CPU:
MicroBlaze or

PowerPC
xps_intc

IRQ

PLBv46

TEMAC Interrupt

Fifo Interrupt

Timer Interrupt

X11002

xps_timerxps_ll_fifo xps_ll_temacMPMC

Setting up the Software System

UG 650 April 15, 2009 www.xilinx.com 5

R

Customizing lwIP API Mode

The lwip130_v1_00_b library supports both raw API and socket API:

The raw API is customized for high performance and lower memory overhead. The
limitation of raw API is that it is callback-based, and consequently does not provide
portability to other TCP stacks.

The socket API provides a BSD socket-style interface and is very portable; however, this
mode is inefficient both in performance and memory requirements.

The lwip130_v1_00_b library also provides the ability to set the priority on TCP/IP and other
lwIP application threads. The following table provides lwIP library API modes.

Xilkernel scheduling policy when using Socket API

The lwIP library in socket mode requires the use of the Xilkernel, which provides two policies for
thread scheduling: round-robin and priority based:

There are no special requirements when round-robin scheduling policy is used because all
threads receive the same time quanta.

With priority scheduling, care must be taken to ensure that lwIP threads are not starved. lwIP
internally launches all threads at the priority level specified in socket_mode_thread_prio.
In addition, application threads must launch xemacif_input_thread. The priorities of both
xemacif_input_thread, and the lwIP internal threads (socket_mode_thread_prio)
must be high enough in relation to the other application threads so that they are not starved.

Configuring Xilinx Adapter Options

The Xilinx adapters for xps_ethernetlite and xps_ll_temac EMAC cores are
configurable.

Ethernetlite Adapter Options

The following table provides the configuration parameters for the xps_ethernetlite
adapter.

Table 1: API Mode Options and Descriptions

Attribute/Options Type Default Description

api_mode
{RAW_API | SOCKET_API}

enum RAW_API The lwIP library mode of operation

socket_mode_thread_prio
integer

integer 1 Priority of lwIP TCP/IP thread and all
lwIP application threads.
This setting applies only when Xilkernel
is used in priority mode.
It is recommended that all threads using
lwIP run at the same priority level.

Table 2: xps_ethernetlite Adapter Options

Attribute Type Default Description

sw_rx_fifo_size integer 8192 Software Buffer Size in bytes of the
receive data between EMAC and
processor

sw_tx_fifo_size integer 8192 Software Buffer Size in bytes of the
transmit data between processor and
EMAC

Setting up the Software System

UG 650 April 15, 2009 www.xilinx.com 6

R

TEMAC Adapter Options

The following table provides the configuration parameters for xps_ll_temac adapter.

Configuring Memory Options

lwIP stack provides different kinds of memories. The configurable memory options are provided
as a separate category. Default values work well unless application tuning is required. The
various memory parameter options are provided in the following table:

Table 3: xps_II_temac Adapter

Attribute Type Default Description

phy_link_speed

{CONFIG_LINKSPEED10|

CONFIG_LINKSPEED100|

CONFIG_LINKSPEED1000|

CONFIG_LINKSPEED_AUTODETECT}

integer CONFIG_LINKSPEED_
AUTODETECT

Link speed as auto-negotiated by the
PHY. lwIP configures the TEMAC for this
speed setting. This setting must be
correct for the TEMAC to transmit or
receive packets.

Note: The setting,
CONFIG_LINKSPEED_AUTODETECT,
attempts to detect the correct linkspeed
by reading the PHY registers; however,
this is PHY dependent, and has been
tested with the Marvell PHYs present on
Xilinx development boards. For other
PHYs, the correct speed should be
chosen.

n_tx_descriptors integer 32 Number of TX buffer descriptors used in
SDMA mode

n_rx_descriptors integer 32 Number of RX buffer descriptors used in
SDMA mode

n_tx_coalesce integer 1 TX interrupt coalescing setting for the
TEMAC

n_rx_coalesce integer 1 RX interrupt coalescing setting for the
TEMAC

tcp_tx_csum_offload integer 1 TX enable checksum offload

tcp_rx_csum_offload integer 1 RX enable checksum offload

Table 4: Memory Configuration Parameter Options

Attribute Type Default Description

mem_size int 8192 Size of the heap memory in bytes. Set this value high if application
sends out large data.

mem_num_pbuf int 16 Number of memp struct pbufs. Set this value high if application
sends lot of data out of ROM or static memory.

mem_num_udp_pcb int 5 Number of active UDP protocol control blocks. One per active UDP
connection.

mem_num_tcp_pcb int 5 Number of active TCP protocol control blocks. One per active TCP
connections.

mem_num_tcp_pcb_listen int 5 Number of listening TCP connections.

mem_num_tcp_seg int 255 Number of simultaneously queued TCP segments.

mem_num_sys_timeout int 3 Number of simultaneously active time-outs.

Setting up the Software System

UG 650 April 15, 2009 www.xilinx.com 7

R

Configuring Socket Memory Options

Sockets API mode has memory options. The configurable socket memory options are provided
as a separate category. Default values work well unless application tuning is required. The
following table provides the parameters for the socket memory options.

Note: Because Sockets Mode support uses Xilkernel services, the number of semaphores chosen in the
Xilkernel configuration must take the value set for the memp_num_netbuf parameter into account.

Configuring Packet Buffer (Pbuf) Memory Options

Packet buffers (Pbufs) carry packets across various layers of the TCP/IP stack. The following
are the pbuf memory options provided by the lwIP stack. Default values work well unless
application tuning is required. The following table provides the parameters for the Pbuf memory
option:

Table 5: Socket Memory Options Configuration Parameters

Attribute Type Default Description

memp_num_netbuf int 5 Number of struct netbufs. This
translates to one per socket.

memp_num_netconn int 5 Number of struct netconns.
This translates to one per socket.

memp_num_api_msg int 8 Number of struct api_msg.
Used for communication
between TCP/IP stack and
application.

memp_num_tcpip_msg int 8 Number of struct tcpip_msg.
Used for sequential API
communication and incoming
packets.

Table 6: Pbuf Memory Options Configuration Parameters

Attribute Type Defaults Description

pbuf_pool_size int 512 Number of buffers in pbuf pool.

pbuf_pool_bufsize int 1536 Size in bytes of each pbuf in pbuf pool.

Setting up the Software System

UG 650 April 15, 2009 www.xilinx.com 8

R

Configuring ARP Options

The following table provides the parameters for the ARP options. Default values work well
unless application tuning is required.

Configuring IP Options

The following table provides the IP parameter options. Default values work well unless
application tuning is required.

Configuring ICMP Options

The following table provides the parameter for ICMP protocol option. Default values work well
unless application tuning is required.

Table 7: ARP Options Configuration Parameters

Attribute Type Default Description

arp_table_size int 10 Number of active hardware addresses,
IP address pairs cached.

arp_queueing int 1 When enabled, (default (1)), outgoing
packets are queued during hardware
address resolution.

arp_queue_first int 0 When enabled, first packet queued is not
overwritten by later packets. The default
(0), disabled, is recommended.

etharp_always_insert int 0 When set to 1, cache entries are updated
or added for every ARP traffic. This
option is recommended for routers.
When set to 0, only existing cache
entries are updated. Entries are added
when lwIP is sending to them.
Recommended for embedded devices.

Table 8: IP Configuration Parameter Options

Attribute Type Default Description

ip_forward int 0 Set to 1 for enabling ability to forward IP
packets across network interfaces. If
running lwIP on a single network
interface, set o 0.

ip_reassembly int 1 Reassemble incoming fragmented IP
packets.

ip_frag int 1 Fragment outgoing IP packets if their size
exceeds MTU.

ip_options int 0 When set to 1, IP options are allowed (but
not parsed). When set to 0, all packets
with IP options are dropped.

Table 9: ICMP Configuration Parameter Option

Attribute Type Default Description

icmp_ttl int 255 ICMP TTL value.

Setting up the Software System

UG 650 April 15, 2009 www.xilinx.com 9

R

Configuring UDP Options

The following table provides UDP protocol options. Default values work well unless application
tuning is required.

Configuring TCP Options

The following table provides the TCP protocol options. Default values work well unless
application tuning is required.

Configuring Debug Options

lwIP stack has debug information. The debug mode can be turned on to dump the debug
messages onto STDOUT. The following option, when set to true, prints the debug messages.

Table 10: UDP Configuration Parameter Options

Attribute Type Defaults Description

lwip_udp bool true Specify if UDP is required.

udp_ttl int 255 UDP TTL value.

Table 11: TCP Options Configuration Parameters

Attribute Type Defaults Description

lwip_tcp bool true Require TCP.

tcp_ttl int 255 TCP TTL value.

tcp_wnd int 16384 TCP Window size in bytes.

tcp_maxrtx int 12 TCP Maximum retransmission
value.

tcp_synmaxrtx int 4 TCP Maximum SYN
retransmission value.

tcp_queue_ooseq int 1 Accept TCP queue segments
out of order. Set to 0 if your
device is low on memory.

tcp_mss int 1476 TCP Maximum segment size.

tcp_snd_buf int 32768 TCP sender buffer space in
bytes.

Table 12: Debug Options Configuration Parameters

Attribute Type Default Description

lwip_debug bool false Turn on lwIP Debug

lwIP Performance

UG 650 April 15, 2009 www.xilinx.com 10

R

Configuring the Stats Option

lwIP stack has been written to collect statistics, such as the number of connections used;
amount of memory used; and number of semaphores used, for the application. The library
provides the stats_display() API to dump out the statistics relevant to the context in which
the call is used. The stats option can be turned on to enable the statistics information to be
collected and displayed when the stats_display API is called from user code. Use the
following option to enable collecting the stats information for the application.

lwIP
Performance

This section provides a brief overview of the expected performance when using lwIP with Xilinx
Ethernet MACs.

The following table provides the maximum TCP throughput achievable by FPGA, CPU, EMAC,
and system frequency in RAW and Socket modes. Applications requiring high performance
should use the RAW API.

Known Issues
and
Restrictions

The lwip130_v1_00_b library does not support more than one TEMAC within a single
xps_ll_temac instance. For example, the lwip130_v1_00_b library does not support the
TEMAC enabled by setting C_TEMAC1_ENABLED = 1 in xps_ll_temac.

Migrating from
lwip_v3_00_a to
lwip130_v1_00_b

Applications written to work with lwip_v3_00_a must make the following changes to work with
the lwip130_v1_00_b library:

The API for function sys_thread_new has changed from lwIP 1.2.0 to lwIP 1.3.0. Use
the new API as follows:

sys_thread_t sys_thread_new(char *name, void (*thread)(void *arg), void
*arg, int stacksize, int prio);

Configure Xilkernel to include yield functionality.

UDP RAW mode callback functions receive a pointer to the IP address of the sender as
one of the parameters. Do not pass this parameter back to any other UDP function as an
argument. Instead, make a copy and pass a pointer to the copy.

Table 13: Statistics Options Configuration Parameters

Attribute Type Default Description

lwip_stats int 0 Turn on lwIP Statistics

Table 14: Library Performance

FPGA CPU EMAC System
Frequenc

y

Max TCP Throughput

RAW Mode Socket Mode

Virtex PPC405 xps_ll_temac 100 MHz 140 Mbps 40 Mbps

Virtex Microblaze xps_ll_temac 125 MHz 100 Mpbs 30 Mbps

Spartan Microblaze xps_ll_temac 66 MHz 35 Mpbs 10 Mbps

Spartan Microblaze xps_ethernetlite 66 MHz 15 Mbps 7 Mbps

