

TE0320 Series User Manual

Xilinx Spartan-3A DSP Industrial-Grade FPGA Micromodule

UM-TE0320 (v2.08) 22 February 2012

Trenz Electronic GmbH

Overview

The TE0320 is an industrial-grade FPGA micromodule integrating a leading-edge *Xilinx Spartan-3A DSP* FPGA, a USB 2.0 microcontroller, 32-bit wide 128 MByte DDR RAM, 4 MByte Flash memory for configuration and operation, and powerful switch-mode power supplies for all on-board voltages. A large number of configurable I/Os is provided via robust board-to-board (B2B) connectors. All this on a tiny footprint, **smaller than a credit card**, at the most competitive price. Hardware and software development environment as well as reference designs are available at: www.trenz-electronic.de.

Sample Applications

- Cryptographic hardware module
- Digital signal processing
- Embedded educational platform
- Embedded industrial OEM platform
- Embedded system design
- Emulation platforms
- FPGA graphics
- Image processing
- IP (intellectual property) cores
- Low-power design
- Parallel processing

Figure 2: TE0320, top view.

- Rapid prototyping
- Reconfigurable computing
- System-on-Chip (SoC) development

Figure 1: TE0320, bottom view.

Key Features

- Industrial-grade Xilinx Spartan-3A DSP FPGA module (1800 k gates or 3400 k gates)
- USB 2.0 (Hi-Speed USB) interface with a signalling bit rate of up to 480 Mbit/s
- 32-bit wide 1 Gbit DDR SDRAM
- FPGA configuration through:
 - B2B connector
 - JTAG port
 - SPI Flash memory
- Large SPI Flash memory (for configuration and operation) accessible through:
 - B2B connector (SPI direct)
 - FPGA
 - JTAG port (SPI indirect)
 - USB bus (Firmware Upgrade Tool)
- On-board 100 MHz oscillator for high performance
- On-board 24 MHz oscillator available to user
- 3 on-board high-power, high-efficiency, switch-mode DC-DC converters capable of 3 A each
- Power supply range: 4.0 7.0 V
- Power supply via USB or B2B (carrier board)
- •4 LEDs, 2 push buttons, 8 DIP switches.
- Plug-on module with 2 female 1.27 mm pitch header connectors
- 109 FPGA I/O pins (+ 10 dual-purpose pins) available on B2B connectors
- Evenly spread supply pins for good signal integrity
- Assembly options for cost or performance optimization available on request

Table of Contents

1 Block Diagram	5
2 Module options	5
3 Specifications	6
4 Board Dimensions	7
5 Power Supply	8
5.1 Power Supply Range	8
5.2 Power Supply Sources	8
5.3 On-Board Power Rails	9
5.4 Power Supervision	12
5.4.1 Power-on Reset	12
5.4.2 Power Fail	13
6 Inputs and Outputs	14
6.1 Board-to-Board Connectors	14
6.2 USB Interface	16
6.2.1 USB Connector	16
6.2.2 USB Pins	
6.3 JTAG Interface	18
6.3.1 JTAG connector J2	18
6.3.2 JTAG lines at B2B connector JM4	20
6.4 I2C bus	20
6.5 SPI bus	21
6.5.1 SPI bus for configuration	22
6.5.2 SPI bus for operation	23
6.6 LEDs	23
6.6.1 System LED D1	23
6.6.2 User LEDs D[5:8]	24
6.7 Push-Buttons S[3:4]	24
6.8 Switches.	25
6.8.1 DIP Slide Switches S1[A:D]	25
6.8.2 Slide Switch S2.	
6.8.3 DIP Slide Switches S5[A:H]	
6.9 Voltage Reference VREF0	
7 Timing	
7.1 Main Clock Oscillator	30
7.2 24 MHz Clock Oscillator.	
7.3 Interface Clock (IFCLK).	
7.4 Digital Clock Manager (DCM)	30
7.5 Watchdog.	30
8 Memories.	33
8.1 DDR SDRAM	
8.2 SPI Flash	
8.3 Serial EEPROM	
9 System Requirements.	34
9.1 Power Supply Requirements.	
9.2 Hardware Design Requirements	
9.3 USB Requirements	
9.4 JTAG Requirements	
9.4.1 Software Requirements	34
9.5 Operating System Support.	

10 Configuration	36
10.1 Mode Select Pins M[2:0]	37
10.2 Configuration via USB bus	38
10.2.1 generic USB device driver installation	39
10.2.2 USB microcontroller large EEPROM programming	41
10.2.3 specific USB device driver installation	44
10.2.4 FWU file generation	46
10.2.5 Firmware Upgrade Tool utilization	52
10.3 Configuration Using Indirect SPI Configuration Mode	55
11 Recommended Design Tools Settings	56
11.1 DONE LED	56
11.2 Unused IOB Pins	57
11.3 CCLK Frequency	57
12 Reference Design Summaries (ISE 11.5)	58
12.1 Reference Design Summary for Xilinx Spartan-3A DSP 1800	58
12.2 Reference Design Summary for Xilinx Spartan-3A DSP 3400	60
13 Verification	62
14 High Resolution Pictures	64
14.1 Top View	65
14.2 Bottom View	66
14.3 Angle View	67
15 Ordering Information	68
15.1 Product Identification System	68
15.2 Assembly Options Overview	68
15.3 Availability	69
16 Product Support	70
17 Related Materials and References	71
17.1 Data Sheets	71
17.2 User Guides	71
17.3 Tutorials	71
17.4 Application Notes	71
18 B2B Connectors Pin Descriptions	73
18.1 Pin Labelling	73
18.2 Pin Types	73
18.3 B2B Connectors Pin-Out	75
18.3.1 JM4 Pin-Out	75
18.3.2 JM5 Pin-Out	76
18.4 Signal Integrity Considerations	77
18.4.1 JM4 Signals Trace Length	78
18.4.2 JM5 Signals Trace Length	79
19 Glossary of Abbreviations and Acronyms	80
20 Legal Notices	81
20.1 Document Warranty	81
20.2 Limitation of Liability	81
20.3 Copyright Notice	81
20.4 Technology Licenses	81
21 Document Change History	82

1 Block Diagram

Figure 3: TE0320 block diagram

2 Module options

FPGA options

Module can be ordered with Spartan-3A DSP XC3SD1800A or XC3SD3400A chip.

Flash options

Module can be ordered with 32, 64 or 128 Mbit SPI Flash chip.

Temperature grade options

Module can be ordered in commercial or in extended (from -25 C $^{\circ}$ to +85 C $^{\circ}$) temperature grade.

3 Specifications

- FPGA: Xilinx Spartan-3A DSP:
 - XC3SD1800A-4FGG676C, XC3SD1800A-4FGG676I or
 - XC3SD3400A-4FGG676C, XC3SD3400A-4FGG676I
- Cypress EZ-USB FX2LPTM USB microcontroller, high speed USB peripheral controller
 - CY7C68013A-56LTXC (commercial grade) or
 - CY7C68013A-56LTXI (industrial grade)
- Numonyx M25P32¹ / M25P64 / M25P128: low voltage, serial Flash memory with 75 MHz SPI bus interface
- 2 × 16-bit data-bus 512 Mbit DDR SDRAM (connected in parallel as a virtual 1 x 32-bit data-bus DDR SDRAM)
- Microchip Technology 24LC128I-ST 128 kbit I2C CMOS serial EEPROM
- 3 × STMicroelectronics ST1S10:
 3 A, 900 kHz, monolithic synchronous step-down regulator
 3 A for each power rail: 1.2 V, 2.5 V, 3.3 V
- Texas Instruments TPS3705–33DGN processor supervisory circuits with power-fail and watchdog
- 100 MHz oscillator (system + user)
- 24 MHz oscillator (system + user)
- 2 × CviLux CBC1-80-2-M110-2P
 1.27 mm (50 mil = .050") pitch 80-pin double row socket (female) header board-to-board (B2B) connectors with key and pegs
- 109 FPGA IO Pins routed to the B2B connector
- 6-pin JTAG header
- 1 × USB mini-B receptacle (device)
- 1 × LED (system)
- ■4 × LED (user)
- 2 × push button (user)
- 4 × DIP switches (system)
- 1 × slide switch (system)
- 8 × DIP switch (user)

¹ Default module configuration contain 32 MBit Flash

4 Board Dimensions

TE0320 can reach a minimum vertical height of about 6 mm if push buttons and USB receptacle are not assembled.

Two mated standard TE0320 connectors have a nominal mated height of 6.0 mm. Processing conditions and solder paste thickness affects such height, resulting in an effective mating heights of 7.0 mm. Therefore the recommended stand-off (distance bolts) height is 7 mm.

TE0320 has 4 mounting holes, one in each corner. The module can be fixed by screwing M3 screws (ISO 262) into a carrier board through those mounting holes.

TE0320 weighs about 25 g.

5 Power Supply

5.1 Power Supply Range

The power supply range of TE0320 is 4.0 V to 7.0 V.

5.2 Power Supply Sources

TE0320 can be power supplied in two ways:

- through USB connector J1,
- through B2B connector JM5 (pins 1 to 4).

The power supply source is determined by assembly option. See Figure 5.

Figure 5: Power supply options diagram

If resistors R9 and R11 are populated and R12 is <u>not</u> populated, then TE0320 is power supplied through JM5 (B2B connector).

Figure 6: assembly combination for power supply through JM5.

If resistors R9 and R11 are <u>not</u> populated and R12 is populated, then TE0320 is power supplied through J1 (USB bus).

Figure 7: assembly combination for power supply through J1.

Any other assembly combination of R9, R11 and R12 is not allowed.

5.3 On-Board Power Rails

According to the Xilinx Spartan-3A DSP literature, there are the following power supply pin types:

- V_{CCAUX}: dedicated auxiliary power supply pins
- V_{CCINT}: dedicated internal core logic power supply pins
- V_{CCO}: supplies power to the output buffers within the I/O bank and sets the input threshold voltage for some I/O standards.

TE0320 has the following power rails on-board:

Vsup

It is the main internal power rail irrespective of the external power supply. It is supplied by either Vb2b or Vusb. It manages power distribution, conversion and supervision. It is routed also to connector JM5 as a user power supply output.

■Vb2b

It is the main power rail when the module is supplied from B2B connector JM5.

Vusb

It is the main power rail when the module is supplied from USB mini-B connector J1. The maximum current than can be provided to J1 is determined by the USB power source.

∎3.3V

It is converted from Vsup by a step-down DC/DC converter and can provide up to 3.0 A to the module and connectors JM4 and JM5.

■2.5V

It is converted from Vsup by a step-down DC/DC converter and can provide up to 3.0 A to the DDR SDRAM and connectors JM5.

■1.2V

It is converted from Vsup by a step-down DC/DC converter and can provide up to 3.0 A to the V_{CCINT} power supply pins and connectors JM5.

VCCAUX

Here there are two assembly options:

(a) if inductor L2 is <u>not</u> populated and the low-noise low drop-out regulator U6 is populated, VCCAUX power rail is supplied with its nominal voltage of 2.5 V. This is the recommended option for noise-sensitive circuitry such as clocking and timing infrastructures.

Figure 8: assembly option for VCCAUX = 2.5 V (bottom view).

- (b) if the ferrite bead L2 <u>is</u> populated and U6 is <u>not</u> populated, the 3.3V power rail is simply filtered to generate VCCAUX power rail. This is the recommended option for cost-sensitive applications. In this case
 - (b.1) ensure the noise level on power rail VCCUAX is suitable to your application;
 - (b.2) avoid the connection of noise sources to power rail VCCUAX.

Figure 9: assembly option for VCCAUX = 3.3 V (bottom view).

Any other assembly combination of L2 and U6 is not allowed.

VCCCIO0

VCCCIO0 supplies V_{cco} to FPGA bank 0. The following assembly options are possible:

(a) if both resistors R131 and R132 are <u>not</u> populated, VCCCIO0 power can be supplied through pins 30 and 44 of B2B connector JM4.

Figure 10: assembly option for VCCAUX = off (bottom view).

Pins 30 and 44 of JM4 are power supply **inputs** in this case.

(b) if resistor R131 is <u>not</u> populated and R132 <u>is</u> populated, VCCCIO0 power rail is set to power rail 2.5V (nominal voltage = 2.5 V).

Figure 11: assembly option for VCCAUX = 2.5 V (bottom view).

Pins 30 and 44 of JM4 are power supply **outputs** in this case.

(c) if resistor R131 <u>is</u> populated and R132 is <u>not</u> populated, VCCCIO0 power rail is set to power rail 3.3V (nominal voltage = 3.3 V). This is the default.

Figure 12: assembly option for VCCCIO0 = 3.3 V (bottom view).

Pins 30 and 44 of JM4 are power supply **outputs** in this case.

Assembly option where both R131 and R132 are populated is not allowed.

1.2 V, 2.5 V and 3.3 V voltage rails are provided by corresponding step-down regulator DC/DC converters, each one capable of providing up to 3 A of output current. These three regulators are synchronized to switch with 120° phase lag, to improve EMC, and to reduce input ripple. The synchronization circuit can be omitted in cost sensitive applications (please contact Trenz Electronic).

Power supply inputs and outputs are made available at B2B connectors JM4 and JM5 for user applications.

Each pin of B2B connectors JM4 and JM5 is capable of a maximum current of 1.0 A.

power-rail name	nominal voltage (V)	maximum current (A)	power source	system supply	user supply
Vb2b	4.0 to 7.0	4.0 (4 pin × 1.0 ^A / _{pin})	JM5	module	-
Vusb	5.0	0.5	J1	module	-
		< 0.5	Vusb	3 × DC/DC	
Vsup	4.0 to 7.0	< 4	Vb2b	DC/DC sync power-fail	JM5 (≤1.0 A)
3.3V	3.3	3.0	Vsup ► DC/DC	module	JM4 (≤1.0 A) JM5 (≤1.0 A)
2.5V	2.5	3.0	Vsup ► DC/DC	DDR SDRAM	JM5 (≤1.0 A)
1.2V	1.2	3.0	Vsup ► DC/DC	VCCINT	JM5 (≤1.0 A)
VCCAUX	2.5	0.3	3.3V ► LDO	VCCAUX	
VCCAUX	3.3	< 3.0	3.3V	VUCAUX	JIVI4 (≤1.0 A)
	2.5	< 3.0	2.5V		JM4 (≤1.0 A)
VCCCIO0	3.3	< 3.0	3.3V	VCCO	JM4 (≤1.0 A)
000100	1.10 to 3.60	2.0 (2 pin × 1.0 A/pin)	JM4 (30 + 44)	(bank 0)	JM4 (30 / 44)

Table 1: On-board power rails summary.

5.4 Power Supervision

5.4.1 Power-on Reset

During power-on, the /RESET line is first asserted. Thereafter, the supply voltage supervisor monitors the power supply rail 3.3V and keeps the /RESET line active (low) as long as the rail remains below the threshold voltage (2.93 V). An internal timer delays the return of the /RESET line to the inactive state (high) to ensure proper system reset. The delay time of 200 ms starts after the rail has risen above the threshold voltage.

Figure 13: Power-on reset with fixed delay time of 200 ms.

After this delay, the /RESET line is reset high and the FPGA configuration can

start. When the rail voltage drops below the threshold voltage, the /RESET line becomes active (low) again.

Figure 14: Reset assertion on power drop with fixed delay time of 200 ms.

5.4.2 Power Fail

TE0320 integrates a power-fail comparator which can be used for low-battery detection, power-fail warning, or for monitoring Vsup power rail.

An additional power-fail circuit can be used, to monitor the input voltage. At 4.4V, a power-fail signal (/PFO) is sent to the FPGA. Should you wish or need another threshold voltage, please contact Trenz Electronic.

6 Inputs and Outputs

6.1 Board-to-Board Connectors

The module has two B2B (board-to-board) connectors (JM4 and JM5) with the following features:

- gender: female
- overall number of contacts: 160
- contacts per connector: 80
- rows per connector: 2
- pitch: 1.27 mm = 50 mil = .050"

Figure 15: Board to board connector assembled on the TE0320.

Trenz Electronic recommends to mate the standard B2B connectors with the following ones:

■ 2 x W+P 6110-080-00-10-PPTR

1.27 mm (50 mil = .050") pitch 80-pin double row boxed plug (male) header board-to-board (B2B) connectors.

Figure 16: Close-up of the recommended mating B2B connector.

This connector couple offers the following two advantages:

- the module is protected against polarity inversion;
- the connection presents a mechanical resistance sufficient for most applications.

Ordering codes for connectors JM4 / JM5 and their mating connectors are given

in Table 2.

	gender	W+P	Trenz Electronic
B2B connector JM4 + JM5	female	6060-080-46-00-10-10-PPTR	23758
B2B mating connector	male	6110-080-00-10-PPTR	23749

 Table 2: Ordering codes of recommended B2B connectors.

The mating height of connectors 6060-080-46-00-10-10-PPTR and 6110-080-00-10-PPTR is 6mm.

Connectors JM4 and JM5 can mate also with any 1.27 mm (50 mil = .050") pitch male header connectors with up to 2 × 40 pins. Figure 17.

Figure 17: sample matching header connector.

Connectors JM4 and JM5 and are placed on the bottom side of the module as shown in Figure 18.

Figure 18: female header connectors JM4 and JM5 (bottom view).

6.2 USB Interface

USB communication can be performed in one of the following two ways:

- through a USB connector
- through USB lines at one B2B connector.

Only one connection type at one time is allowed.

6.2.1 USB Connector

TE0320 is provided with a USB mini-B receptacle (device) connector J1 on the top side.

Figure 19: USB connector (top view).

Figure 20: USB mini-B receptacle (device) connector.

Figure 21 shows a sample USB connection between computer and TE0320 for both configuration and operation. The USB cable provides for

- Power supply.
- Configuration by means of the Firmware Upgrade Tool (FUT), recommended for field upgrades. Please use a dedicated JTAG Adapter during development.
- Data communication channel during operation.

Figure 21: sample USB connection (TE0320 side).

In order to minimize the stub on USB lines and improve communication quality, the connection to both USB pins of B2B connector JM4 can be interrupted by removing resistors R3 and R4.

Figure 22: resistors R3 and R4 removed for lower stub on USB lines.

Should you require a module version without connector J1, please contact Trenz Electronic.

6.2.2 USB Pins

USB communication can be performed over 2 pins of B2B connector JM4 as

detailed in Table 3. Ensure resistors R3 and R4 are populated to connect USB B2B pins B2B D P and B2B D P to USB lines D P and D P respectively.

pin number pin name		signal name	description
4	B2B_D_P	D_P	USB data + (D+)
6	B2B_D_N	D_N	USB data - (D-)

Table 3: USB pins at B2B connector JM4.

Figure 23: Resistors R3 and R4 required for USB communication over B2B connector JM4.

6.3 JTAG Interface

6.3.1 JTAG connector J2

JTAG signals are available on the gender-inverted standard 6-pin JTAG header connector J2 as shown in Figure 24.

Figure 24: JTAG connector J2.

To connect your computer to JTAG connector J2 you typically need

- a JTAG cable with standard 6-pin JTAG female header;
- a 2.54 mm pitch 1 × 6 pin gender changer header.

Some examples of JTAG cable set are listed in Table 4.

JTAG cable	flying leads	software	gender changer
Xilinx Platform Cable USB	included	Xilinx iMPACT	1 × 6 pin
Digilent XUP USB-JTAG Programming Cable	XUP Fly Wire Assembly	Xilinx iMPACT	1 × 6 pin

 Digilent JTAG-USB Full Speed Module
 not needed
 Digilent Adept 2.0
 1 × 6 pin

 Table 4: some examples of JTAG cable set.

Table 4. Some examples of JTAG cable set.

Figure 25 shows a standard 6-pin JTAG female header, in this case flying leads, with a gender changer header.

Figure 26 shows how a JTAG cable, in this case a Xilinx Platform Cable USB with flying leads and gender changer, is connected to a TE0320.

Figure 25: standard 6-pin JTAG female header with gender changer. Figure 26: sample JTAG cable connection ((TE0320 side).

Figure 27 shows a recommended set-up for TE0320 configuration and operation. The USB cable provides for power supply and data communication channel. The JTAG is ideal for quick configuration and effective debugging.

Figure 27: recommended TE0320 set-up.

6.3.2 JTAG lines at B2B connector JM4

JTAG signal lines are also available at B2B connector JM4. See Table 40 for additional information on these signals.

6.4 I2C bus

TE0320 has a flexible I2C bus on-board as outlined in Figure 28.

Figure 28: I2C bus topology.

The I2C signals on the TE0320 are listed and described in Table 5.

name	definition	description
SDA	serial data	This is a bidirectional pin used to transfer addresses and data into and out of a device.
SCL	serial clock	This signal is used to synchronize the data transfer to and from a device.

Table 5: I2C signals summary.

The I2C bus is typically used by the USB microcontroller to write USB firmware to the serial EEPROM. In this case,

- the I2C port of the FPGA must be set in slave mode (SCL pin as input),
- the device attached to the I2C port of B2B JM5 connector must be set to slave mode.

The USB microcontroller can operate just in I2C master mode (default operation). If the user wants to set another device attached to the I2C bus as master device, the USB microcontroller shall three-state (Z = high impedance) its SCL and SDA pins.

If the FPGA is set to I2C master mode, it can write to or read from serial EEPROM (always slave mode) and B2B connector JM5 (attached device set to slave mode).

If the device attached to the I2C port of B2B JM5 connector is set to master mode, it can write to or read from serial EEPROM (always slave mode) and FPGA I2C port (set to slave mode).

Possible I2C operation modes are summarized in Table 6.

core	EZ-USB FX2LP	FPGA (SDA = I/O)	B2B JM5	serial EEPROM
default	master	slave SCL = I	slave	slave
custom	inactive SCL = SDA = Z	master SCL = 0	slave	slave
custom	inactive SCL = SDA = Z	slave SCL = I	master	slave

Table 6: I2C bus modes summary.

TE0320 reference design includes an HDL core managing the fast mode (400 kHz) I2C communication between the Xilinx MicroBlaze embedded softprocessor and the EZ-USB FX2LP USB microcontroller.

I2C pins on B2B connector JM5 cannot be used as GPIOs (general purpose I/Os), as these bus signals are pulled up to 3.3V.

6.5 SPI bus

TE0320 has a flexible SPI bus on-board as outlined in Figure 29.

Figure 29: SPI bus topology.

SPI signals on the TE0320 are listed and described in Table 7.

name	definition	description
SPI_Q	serial data output	This output signal is used to transfer data serially out of the device. Data is shifted out on the falling edge of SPI_/C.
SPI_D	serial data input	This input signal is used to transfer data serially into the device. It receives instructions, addresses, and the data to be programmed. Values are latched on the rising edge of SPI_/C
SPI_/C	serial clock	This input signal provides the timing of the serial interface. Instructions, addresses, or data present at SPI_D are latched on the rising edge of SPI_/C. Data on SPI_Q changes after the falling edge of SPI_/C.
		When this input signal is high , the device is disabled and SPI_Q is at high impedance (Z).
SPI_/S	chip select	When this input signal is low, the device is enabled.
		After power-up, a falling edge on SPI_/S is required prior to the start of any instruction to the Flash memory.

Table 7: SPI signals summary.

SPI signal pin-out of the TE0320 is summarized in Table 8.

name	FPGA ball	JM5 pin
SPI_Q	AF24	18
SPI_D	AB15	12
SPI_/C	AE24	22
SPI_/S	AA7	20

Table 8: SPI pin-out summary.

SPI pins on B2B connector JM5 cannot be used as GPIOs (general purpose I/Os).

The SPI bus can be used during configuration and operation in a plurality of ways as summarized respectively in Table 9 and Table 10. Any other usage of the SPI bus is neither supported nor recommended.

6.5.1 SPI bus for configuration

The SPI bus is used for configuration in two ways by default:

(d) EZ-USB ► Flash

the USB microcontroller (master) writes the PROM file (containing the FPGA configuration bitstream) to the SPI serial Flash memory (slave)

(e) FPGA ◄ Flash

the FPGA (master) configures itself in Master SPI mode from the SPI serial Flash memory (slave).

In case (a), the FPGA shall be turned off to release its shared SPI pins.

In case (b), the USB microcontroller shall three-state (Z = high impedance) its shared SPI pins.

description	usage	EZ-USB FX2LP	FPGA	B2B JM5	serial Flash
EZ-USB ► Flash	FUT API	master	off (S2 = FX2PON, FX2_PS_EN = 0)	deselected	slave
FPGA ◀ Flash	FUT API	inactive SPI_* = Z	master (SPI_/S = 1)	deselected	slave
B2B JM5 ► Flash	custom	inactive SPI_* = Z	off (S2 = FX2PON, FX2_PS_EN = 0)	master (SPI_/S = 0)	slave

Table 9: SPI bus modes for configuration.

The PROM file (containing the FPGA configuration bitstream) can be written to the SPI serial Flash memory (slave) also through the SPI pins of B2B connector JM5 (attached device set to master mode). In this case, the FPGA shall be turned off or three-stated to release its shared SPI pins and the USB microcontroller shall three-state (Z = high impedance) its shared SPI pins.

6.5.2 SPI bus for operation

A plurality of usage combinations of the SPI bus during operation is made available to the user as suggested in Table 10.

description	usage	EZ-USB FX2LP	FPGA	B2B JM5	serial Flash
EZ-USB ◀► Flash	custom	master	off (S2 = FX2PON, FX2_PS_EN = 0)	deselected	slave
FPGA ◄► Flash	custom	inactive SPI_* = Z	master (SPI_/S = 1)	deselected	slave
B2B JM5 ⋖ ► Flash	custom	inactive SPI_* = Z	off (S2 = FX2PON, FX2_PS_EN = 0)	master (SPI_/S = 0)	slave
EZ-USB ◀► B2B JM5	custom	master SPI_/S = 1	off (S2 = FX2PON, FX2_PS_EN = 0)	slave	deselected
EZ-USB ◀► B2B JM5	custom	slave SPI_/C = Z	off (S2 = FX2PON, FX2_PS_EN = 0)	master (SPI_/S = 1)	deselected

Table 10: SPI bus modes for operation.

Other combinations of master and slave units are neither supported nor recommended.

6.6 LEDs

6.6.1 System LED D1

LED D1 is connected to the DONE pin. The DONE pin is powered by the VCCAUX supply.

The FPGA actively drives the DONE pin Low during configuration. Thus, LED D1 is unconditionally turned off during configuration.

To have LED D1 turned on or off after successful configuration, please see paragraph 11 Recommended Design Tools Settings.

Figure 30: DONE LED D1 (bottom side).

6.6.2 User LEDs D[5:8]

TE0320 is provided with 4 user LEDs. A LED is lit when the corresponding signal listed in Table 11 is set high (logical 1).

LED	signal	FPGA ball	FPGA pin	bank
D5	UL1	R20	IO_L22N_1	1
D6	UL2	V23	IO_L21P_1	1
D7	UL3	R19	IO_L22P_1	1
D8	UL4	U24	IO_L23N_1 VREF_1	1

Table 11: user LEDs signal details..

6.7 Push-Buttons S[3:4]

TE0320 is provided with 2 user buttons. A signal listed in Table 12 is set low (logical 0) when a push button is pressed, and vice-versa.

switch	signal	FPGA ball	FPGA pin	bank	default input	input when pressed
S3	PB1	U23	IO_L23P_1	1	logical 1	logical 0
S4	PB2	R22	IO_L25N_1	1	logical 1	logical 0

Table 12: user push-buttons signal details.

S4 - PB2 S3 - PB1

Figure 31: push buttons PB1 and PB2.

Warning! on some boards, PB1 and PB2 labels might be exchanged. Please take Figure 31 as reference.

6.8 Switches

TE0320 is provided with the following slide switches:

- S1: 4 x DIP slide switches (system)
- S2: 1 x slide switch (system)
- S5: 8 × DIP slide switches (user)

6.8.1 DIP Slide Switches S1[A:D]

TE0320 is provided with 4 system DIP slide switches as shown in Figure 32: S1A, S1B, S1C, S1D.

Figure 32: DIP slide switches S1[A:D].

Please note the 4 switch labels are on one side and the <ON> label is on the opposite side.

DIP slide switches S1[A:D] condition the value of some system signals as described in Table 13.

switch	S1 label	signal name	<0FF>	<on></on>
S1A	1	EEPROM serial data	the USB microcontroller CANNOT read / write the serial EEPROM	the USB microcontroller can read / write the serial EEPROM
S1B	2	M2	mode pin M2 = 1	M2 = 0
S1C	3	M1	mode pin $M1 = 1$	M1 = 0
S1D	4	/MR (master reset)	module reset	module running

 Table 13: S1X settings description.

DIP slide switches S1A is ON by default, to allow the USB microcontroller to read the serial EEPROM and enumerate as a custom/specific USB device. When DIP slide switches S1A is ON, the USB microcontroller can (re)write the serial EEPROM to, for example, store a (new) custom/specific firmware. When DIP slide switch is OFF, the USB microcontroller cannot read the serial EEPROM and enumerates as a generic USB device.

6.8.2 Slide Switch S2

TE0320 is provided with a slide switch S2.

Figure 33: Slide switch S2 (angle view).

Slide switch S2 conditions the value of signal PS_EN. Signal PS_EN enables (high) or disables (low) power rails 2.5V and 1.2V. According to the corresponding assembly option, power rail VCCCIO0 can depend or not on the 2.5V power rail. Power-rail 3.3V is not controlled by signal PS_EN and is unconditionally enabled. Table 14 summarizes all switching options implied by slide switch S2 under the standard assembly option.

power rail	S2= PON	S2 = FX2 PON FX2_PS_EN = 1	S2 = FX2 PON FX2_PS_EN = 0
2.5V	on	on	off
1.2V	on	on	off
VCCCIO0 (= 2.5V)	on	on	off
VCCCIO0 (= 3.3V)	on	on	on

Table 14: Slide switch S2 settings overview.

6.8.2.1 Slide Switch S2 = PON

When slide switch S2 is in the right position (PON = power rails unconditionally on), signal PS_EN is set to power rail 3.3V. Thus power rails 2.5V and 1.2V are unconditionally enabled.

Figure 34: S2 on position PON.

6.8.2.2 Slide Switch S2 = FX2 PON

When slide switch S2 is in the left position (FX2 PON = power rails conditionally on depending on signal FX2_PS_EN), signal PS_EN is set to signal FX2_PS_EN driven by the EZ-USB FX2LP USB microcontroller under user control.

When the EZ-USB FX2LP USB microcontroller sets signal FX2_PS_EN (high), power rails 2.5V and 1.2V are enabled. This setting can be useful for dynamic

full power operation.

Figure 35: S2 on position FX2 PON (FX2_PS_EN = high).

When the EZ-USB FX2LP USB microcontroller resets signal FX2_PS_EN (low), the following components are switched off:

- FPGA core logic (1.2V)
- DDR SDRAM (2.5V)
- FPGA bank 3 (2.5V)
- VREF (2.5V)
- VCCCIO0 (2.5V) FPGA bank 0

This setting can be useful for dynamic **low power** operation.

Figure 36: S2 on position FX2 PON (FX2_PS_EN = low).

6.8.2.3 Alternate Assembly Options for Slide Switch S2

Slide switch S2 can be replaced by one resistors in the following cases:

- cost sensitive applications
- applications where just one position of S2 is required
- application where switching of S2 is not allowed.

Assembly option when resistor R17 <u>not</u> populated and R19 populated is equivalent to slide switch S2 permanently set to PON.

Figure 37: assembly option: S2 = PON.

Assembly option when resistor R17 populated and R19 <u>not</u> populated is equivalent to slide switch S2 permanently set to FX2 PON.

Figure 38: Assembly option: S2 = FX2 PON.

Any other assembly options of R17 and R19 are not allowed.

6.8.3 DIP Slide Switches S5[A:H]

TE0320 is provided with 8 user DIP slide switches as shown in Figure 39: S5A to S5H.

Figure 39: DIP slide switches S5[A:H].

Please note the 8 switch labels are on one side and the <ON> label is on the opposite side.

DIP slide switches S5[A:H] condition the value of some user signals as described in Table 15.

switch	S5 label	signal name	FPGA ball	FPGA pin	FPGA bank
S5A	1	US1	F24	IO_L54N_1	1
S5B	2	US2	E24	IO_L56P_1	1
S5C	3	US3	E26	IO_L60P_1	1
S5D	4	US4	D24	IO_L61N_1	1
S5E	5	US5	D26	IO_L60N_1	1
S5F	6	US6	D25	IO_L61P_1	1
S5G	7	US7	C26	IO_L63P_1 A22	1
S5H	8	US8	C25	IO_L63N_1 A23	1

Table 15: S1X settings description.

A signal listed in Table 15 is set low (logical 0) when a slide switch is set to <ON>, and vice-versa.

6.9 Voltage Reference VREF0

The user can freely set voltage VREF0 through pin 37 of B2B connector JM4. VREF0 is the reference voltage for setting the input switching threshold for certain I/O standards of FPGA bank 0. For more information on reference voltages, please consult Xilinx DS610: Spartan-3A DSP FPGA Family: Complete Data Sheet.

Recommended operating voltage for VREF0 is 0.75 to 1.5 V

Absolute maximum voltage range for VREF0 is -0.5 to VCCCIO+0.5 V.

7 Timing

7.1 Main Clock Oscillator

The module has a main SMD clock oscillator providing a clock source for the FPGA as detailed in Table 3.

MAINCLK IO_L27N_2 GCLK1 AA14 2	signal	FPGA pin	FPGA ball	FPGA bank
	MAINCLK	IO_L27N_2 GCLK1	AA14	2

 Table 16: Main clock signal details.

Standard frequency is 100 MHz. Should you wish or need another main clock oscillator frequency, please contact Trenz Electronic. The lower the main clock frequency, the lower the module power consumption. Moreover, as the main clock is preferably used as DDR SDRAM clock, a lower clock frequency makes easier for the development tools to meet the timing requirements (particularly for DDR SDRAM).

7.2 24 MHz Clock Oscillator

The module has a 24 MHz SMD clock oscillator providing a clock source for both the EZ-USB FX2LP USB microcontroller (XTALIN) and the FPGA as detailed in Table 17.

signal	FPGA pin	FPGA ball	FPGA bank
24MHZ1	IO_L28N_2 GCLK3	AE14	2

Table 17: 24 MHz clock signal details.

7.3 Interface Clock (IFCLK)

The IFCLK line synchronizes the communication between the EZ-USB FX2LP USB microcontroller and the FPGA as detailed in Table 18.

signal	FPGA pin	FPGA ball	FPGA bank
IFCLK	IO_L31N_1 TRDY1 RHCLK3	P25	1

Table 18: Interface clock signal details.

7.4 Digital Clock Manager (DCM)

The DCMs of the FPGA can be used to synthesize arbitrary clock frequencies from any on-board clock network, differential clock input pair or single-ended clock input. For further reference, please read Xilinx DS485:Digital Clock Manager (DCM) Module and the DCM chapter in Xilinx UG331: Spartan-3 Generation FPGA User Guide.

7.5 Watchdog

TE0320 has a watchdog timer that is periodically triggered by a positive or negative transition of the watchdog input (WDI) signal. When the supervising system fails to retrigger the watchdog circuit within the time-out interval (min 1.1

s, typ 1.6 s, max 2.3 s), the watchdog output becomes active and asserts the master reset (/MR) signal. This event also reinitializes the watchdog timer.

If resistors R135 and R165 are not populated, the watchdog is disabled.

If resistors R135 and R165 are populated, the watchdog <u>can be</u> enabled. In this case there are still two options.

- To <u>enable</u> the watchdog after module power-up, drive the WDI signal to generate a transition (no matter if positive or negative).
- To keep the watchdog <u>disabled</u>, set the WDI FPGA signal output to highimpedance. One way to reach this goal is to leave FPGA pin V24 (FPGA signal IO_L19P_1) undeclared in the user constraints file (UCF) and set the Xilinx Project Navigator options as follows:

project properties > configuration options > unused IOB
pins > float.

🚾 Process Properties	- Configuration Options				
Category					
General Options					
Configuration Uptions	Property Name	Value			
Readback Options	Configuration Rate	4 💌			
Encryption Options	Configuration Clk (Configuration Pins)	Pull Up 🛛 🔽			
	Configuration Pin M0	Pull Up 🛛 🔽			
	Configuration Pin M1	Pull Up 🔽			
	Configuration Pin M2	Pull Up 🔽			
	Configuration Pin Program	Pull Up 🔽			
	Configuration Pin Done	Pull Up 🔽			
	Configuration Pin Init	Pull Up 🔽			
	Configuration Pin CS	Pull Up 🔽			
	Configuration Pin DIn	Pull Up 🔽			
	Configuration Pin Busy	Pull Up 🔽			
	Configuration Pin RdWr	Pull Up 🔽			
	JTAG Pin TCK	Pull Up 🔽			
	JTAG Pin TDI	Pull Up 🔽			
	JTAG Pin TDO	Pull Up 🔽			
	JTAG Pin TMS	Pull Up 🔽			
	Unused IOB Pins	Pull Down 🔽			
	UserID Code (8 Digit Hexadecimal)	Pull Down			
	DCI Update Mode	Pull Up			
		Float			
	Property display level: Advanced	✓ <u>D</u> efault			
OK Cancel Apply Help					

Figure 40: configuration option in Xilinx ISE Project Navigator.

Figure 41: R135 (bottom side).

Figure 42: R136 (top side).

Any other combination of resistors R135 and R136 is not supported.

8 Memories

The TE0300 has three on-board memories:

- DDR SDRAM
- SPI Flash
- serial EEPROM

8.1 DDR SDRAM

TE0320 modules have two 512Mb DDR SDRAM components each with a 16-bit data-bus connected in parallel to FPGA bank 3 as a virtual 512Mb DDR SDRAM component with a 32-bit data-bus. Memory available in industrial and commercial temperature grade.

8.2 SPI Flash

TE0320 has an STMicroelectronics M25P32/64/128 (32/64/128-Mbit), low voltage, serial Flash memory with 75 MHz SPI bus interface for configuration and operating storage accessible through USB or SPI. Default module configuration contain 32 Mbit Flash chip M25P32, others available by request.

8.3 Serial EEPROM

TE0300 modules have a Micron Technology 24LC128 128 kbit I2C CMOS Serial EEPROM for EZ-USB FX2 firmware, vendor ID and device ID storage accessible through the EZ-USB FX2 microcontroller.

9 System Requirements

9.1 Power Supply Requirements

TE0320 can be power supplied by one of the following power sources:

■USB bus, 5 V;

■ JM5[1:4], 4 V to 7 V power supply (5 V recommended).

System current consumption is design dependent.

USB buses able to supply only 100 mA are not supported.

See paragraph 5.2 Power Supply Sources for additional information on this topic.

9.2 Hardware Design Requirements

PUDC_B (pull-up during configuration, active Low) pin in TE0320 modules is hard-wired high, determining user-I/O pins to float before and during configuration. Turning off pull-up resistors in hot-swap or hot-insertion applications, disables potential current paths to the I/O power rail. However, external pull-up or pull-down resistors may be required on each individual I/O pin depending on the specific application.

9.3 USB Requirements

Recommended USB bus classes are 1.1 and 2.0.

TE0320 can be connected to a USB bus through connector either J1 or JM4[4, 6].

SPI serial Flash memory can be written through the Firmware Upgrade Tool and the API.

Data communication over USB can be implemented through the API.

9.4 JTAG Requirements

TE0320 can be configured and debugged over JTAG through connector either J2 or JM4[74, 76, 78, 80].

See paragraph 6.3 JTAG Interface for additional information on this topic.

9.4.1 Software Requirements

Software requirements depend on the intended design goal.

design goal	ISE WebPACK	EDK
HDL design	•	
MicroBlaze design	•	•
reference design	•	•

Table 19: software requirements chart.

EDK: Xilinx Embedded Development Kit = XPS + SDK;

XPS = Xilinx Platform Studio (for hardware engineers);

SDK: Xilinx Software Development Kit (for software engineers).

Xilinx ISE WebPACK is a free development environment featuring

- Xilinx ISE Foundation (device limited)
- Xilinx ISE Simulator (ISim)
- Xilinx PlanAhead

TE0320 reference design requires Xilinx EDK.

Please visit the official Xilinx ISE Design Suite page for latest information about Xilinx design tools.

9.5 Operating System Support

Xilinx ISE Design Suite is supported on both 32-bit and 64 bit versions of both Microsoft Windows and GNU/Linux operating systems. Please consult the Xilinx ISE Design Suite Product Table and Xilinx ISE Design Suite Software Matrix on the official Xilinx ISE Design Suite page for latest information about Xilinx ISE Design Suite operating system support.

TE0320 software package includes EZ-USB FX2LP USB microcontroller device drivers for the 32 bit version of Microsoft Windows operating system.

TE0320 software package includes the Firmware Upgrade Tool for the 32 bit version of Microsoft Windows operating system.

10 Configuration

The Xilinx Spartan-3A DSP FPGA on the TE0320 can be configured in the following ways:

- B2B connector
 - JTAG
 - Slave Parallel (SelectMAP)
 - Slave Parallel
- JTAG port
- SPI Flash memory

For further information on Xilinx Spartan-3A DSP configuration modes, please consult the documentation listed in chapter 17 Related Materials and References.

The SPI Flash memory can be programmed in the following ways:

- B2B connector (SPI direct)
- FPGA
- JTAG (SPI indirect)
- USB bus (Firmware Upgrade Tool)

Figure 43: configuration modes overview.
10.1 Mode Select Pins M[2:0]

The mode select pins M[2:0] define the configuration mode that the FPGA uses to load its bitstream. Table 20 shows the configuration modes supported by TE0320. The logic level applied to the mode pins is sampled on the rising edge of INIT_B, immediately after the FPGA completes initializing its internal configuration memory. See Xilinx UG332: Spartan-3 Generation Configuration User Guide for additional information on these signals.

configuration mode	M2	M1	M0
master SPI	0	0	1
JTAG	1	0	1
slave parallel (SelectMAP)	1	1	0
slave serial	1	1	1

Table 20: mode pin settings supported by TE0320.

Xilinx Spartan-3 generation FPGAs have a dedicated four-wire IEEE 1149.1/1532 JTAG port that is always available any time the FPGA is powered and regardless of the mode pin settings. However, when the FPGA mode pins are set for JTAG mode (M[2:0] = <1:0:1>), the FPGA waits to be configured via the JTAG port after a power-on event or after PROG_B is pulsed Low. Selecting the JTAG mode simply disables the other configuration modes. No other pins are required as part of the configuration interface.

M0-M2 have Pull ups in FPGA.

If S1B S1C is off, then signals from B2B should be left float. If S1B C1C is on, then mode can be set from B2B.

Stop condition: Never set Mx from B2B directly to one,

Table 21 shows some options about setting mode pin M2 high or low.

M2 value	M2 @ S1B	M2 @ JM5
0	0N	any
0	any	0
1	OFF	floating
1	OFF	1

Table 21: mode pin M2 settings.

Table 22 shows some options about setting mode pin M1 high or low.

M1 value	M1 @ S1C	M1 @ JM5
0	0N	any
0	any	0
1	OFF	floating
1	OFF	1

Table 22: mode pin M1 settings.

Table 23 shows some options about setting mode pin M0 high or low.

 M0 value
 M0 @ JM5

 0
 0

 1
 floating

 1
 1

 Table 23: mode pin M0 settings.

Figure 44: configuration modes schematic

10.2 Configuration via USB bus

To configure a TE0320 module via USB bus, there are different procedures to follow according to module status and purpose of use. For instance, a full quality control test already performed at Trenz Electronic laboratory premises requires all the following steps to be performed:

- (a) generic USB device driver installation
- (b) USB microcontroller large EEPROM programming
- (c) specific USB device driver installation
- (d) FWU file generation
- (e) Firmware Upgrade Tool utilization.

step	first development cycle	following development cycles	EEPROM recovery	quality control (lab test)
(a)			•	•
(b)			•	•
(c)	•			•
(d)	•	•		•
(e)	•	•		•

Table 24: configuration steps via USB bus according to module status and purpose of use.

10.2.1 generic USB device driver installation

TE0320 users are normally not required to perform this step.

This step has to be performed when a Trenz Electronic module with EZ-USB technology is connected to a computer on which the Cypress generic USB device driver is not yet installed.

Disconnect the TE0320 from the USB bus or leave it unconnected if it already is.

Ensure that DIP switch S1 is set as follows:

■ S1A = OFF

this disconnect the serial data line between the USB microcontroller and the large EEPROM; in so doing, the USB microcontroller enumerates as a Cypress generic USB device

S1B and S1C = do not care

configuration mode is irrelevant for this step

■S1D = OFF

master reset disabled

switch	S1 label	signal name	status
S1A	1	EEPROM serial data	OFF
S1B	2	M2	Х
S1C	3	M1	Х
S1D	4	/MR (master reset)	OFF

Table 25: S1 Settings for installing generic USB device driver.

Figure 45: S1 Settings for installing generic USB device driver.

Connect the TE0320 to a USB port on your computer using a USB cable.

Follow the "Found New Hardware" wizard to install the driver, if necessary, as shown in the following example. You need to look for the

step1_factory/CyUSB.inf device driver information file in the TE0320 software package.

40/82

After successful installation of the generic device driver, TE0320 should be identified as "Cypress Generic USB Device" and the Device Manager panel should look like Figure 46.

Figure 46: Device manager after successful installation of the generic device driver.

Now the EZ-USB microcontroller can be controlled from a computer by the Cypress USB Console.

10.2.2 USB microcontroller large EEPROM programming

TE0320 users are <u>not</u> normally required to perform this step.

Disconnect the TE0320 from the USB bus or leave it unconnected if it already is.

Ensure that DIP switch S1 is set as follows:

■ S1A = OFF

this disconnect the serial data line between the USB microcontroller and the large EEPROM; in so doing, the USB microcontroller enumerates as a

Cypress generic USB device

S1B and S1C = do not care

configuration mode is irrelevant for this step

■ S1D = OFF

master reset disabled

switch	S1 label	signal name	status
S1A	1	EEPROM serial data	OFF
S1B	2	M2	Х
S1C	3	M1	Х
S1D	4	/MR (master reset)	OFF

Table 26: S1 settings for forcing the EZ-USB FX2LP USB microcontroller to enumerate as a generic USB device driver.

Figure 47: S1 settings for forcing the EZ-USB FX2LP USB microcontroller to enumerate as a generic USB device driver.

Connect the TE0320 to a USB port on your computer using a USB cable.

The USB microcontroller should now enumerate as a Cypress generic USB device.

Toggle S1A to ON; this will

- Connect the serial data line between the USB microcontroller and the large EEPROM;
- Allow the EZ-USB FX2LP USB microcontroller to program the large EEPROM;
- Prevent the EZ-USB FX2LP USB microcontroller to enumerate again for any content of the large EEPROM.

switch	S1 label	signal name	status
S1A	1	EEPROM serial data	ON
S1B	2	M2	Х
S1C	3	M1	Х
S1D	4	/MR (master reset)	OFF

Table 27: S1 settings for programming EZ-USB FX2LP USB microcontroller large EEPROM.

Figure 48: S1 settings for programming EZ-USB FX2LP USB microcontroller large EEPROM.

🐨 Cypress USB Co	nsole				
Eile Options Help					
èv 🗖 🖸 🖾 🕻	Selected Script:		ж	(D 7
Select Device					
USB Address Devic	e Name	Name in Win	dows Device Mgr	(from .in	£) [
4 USB	Device	Cypress Gen	eric USB Device		
1					
Device Properties Co	ontrol Endpt Xfers C	Ither Endpt Xfers Mi	sc.		_
Vender/D 0		Class	0.055		
ProductID 0	x8613	Subel	ASS OXFF		
Manufacturer		Protoc	ol. OxFF		
Product		bcdDe	vice 0xA001		
Serial Number					
Device Configurations	: (1)				
Value	Attributes	Max Power			
0x01	0x80	0x32 (100 mA)			
Configuration Interfac	es (4)				
Intfc Alt Setting	Class	Subclass	Protocol		
0 0	0xFF (Vendor)	0xFF	0xFF		
0 1	OxFF (Vendor)	0xFF	0xFF		
JU 2	UXFF (Vendor)	UXFF	UXFF		
Interface Endpoints (0)				
Address	Attributes	Max Pkt Size	e Interval		

Run Cypress USB Console application from the TE0320 software package: 1st_program\CyConsole\CyConsole.exe. The device must have the status "Cypress Generic USB Device" in the select device display. This indicates that the Cypress USB Console

recognizes the EZ-USB microcontroller.

	1-			
File Options Help	onsole			
EZ-USB Intern Selet USb Houress Devin 3 USB	Face Script In Startup Jout Ce Manne Device	: Name in Wi Cypress Ger	ndows Device Mgr (from neric USB Device	C ₹
Device Properties C VendorID	ontrol Endpt Xfers ()x04B4)x8613	Dther Endpt Xfers N Class Subc Proto bcdD	tisc.) 0xFF lass 0xFF col 0xFF evice 0xA001	
Device Configuration	s (1)			
Value 0-01	Attributes	Max Power		
Configuration Interfac Intfc Alt Setting 0 0 0 1 0 2	es (4) Class 0xFF (Vendor) 0xFF (Vendor) 0xFE (Vendor)	Subclass 0xFF 0xFF	Protocol 0xFF 0xFF 0xFF	
Interface Endpoints	(0)	May Did Cir	e Isterral	
Address	Attributes	j mlax PKt Siz	e j interval	1

Click Options from the top menu of the CyConsole window and then choose the EZ-USB Interface.

A new application window opens: EZ-USB Interface. "S EEPROM" button refers to the small EEPROM (256 bytes) whereas the "Lg EEPROM" one refers to the large EEPROM (64 kbit). Press the "Lg_EEPROM" button.

🐨 EZ-U	B Interface	
Device	USB Device Clear Load Mon S EEPROM Select Mon	
Get Dev	Get Conf Get Pipes Get Strings Download Re-Load La EEPROM URB Stat HOLD RUN	
Vend Rec	Req 0x00 Value 0x0000 Index 0x0000 Length 0 Dir 0 OUT - Hex Bytes C0 B4 04 81 00 01	1 00 💌
lso Trans	Pipe Length 128 Packet Size Packets	
Bulk Trans	Pipe Length 64 Hex Bytes 5	
Reset Pip	Abort Pipe File Trans Pipe	
Set IFace	Interface 0 AltSetting 0	
		1
		~

The display window shows the process of IIC file being programmed into the EEPROM and displays "Downloaded Successful" when completed.

F7-USB Interface Device USB Device Clear Load Mon S EEPROM Select Mon Get Dev Get Conf Get Pipes Get Strings Download Re-Load Lg EEPROM URB Stat HOLD Vend Reg Reg 0x00 Value 0x084E Index 0x0000 Length 0 Dir 0 0UT - Hex Bytes C0 B4 04 81 00 01 00 - Length 128 Packet Size Packets Pipe Length 64 ans Pipe Hex Bytes 5 -Reset Pipe Abort Pipe File Trans.. Pipe -Set IFace Interface 0 AttSetting 0 0010 Toggle ownloading 1331 bytes to addr=1000 ownload Successful: 5427 bytes downloaded

10.2.3 specific USB device driver installation

TE0320 users <u>are</u> normally required to perform this step when a Trenz Electronic module with DEWESoft technology is connected to a computer on which the DEWESoft specific USB device driver is not yet installed.

Disconnect the TE0320 from the USB bus or leave it unconnected if it already is.

Ensure that DIP switch S1 is set as follows:

■ S1A = ON

this connect the serial data line between the USB microcontroller and the large EEPROM; in so doing, the USB microcontroller is able to read the large EEPROM and enumerate as a DEWESoft specific USB device

S1B and S1C = do not care

configuration mode is irrelevant for this step

■S1D = OFF

master reset disabled

switch	S1 label	signal name	status
S1A	1	EEPROM serial data	ON
S1B	2	M2	Х
S1C	3	M1	Х
S1D	4	/MR (master reset)	OFF

Table 28: S1 settings for installing specific USB device driver.

Figure 49: S1 settings for installing pecific USB device driver.

Connect the TE0320 to a USB port on your computer using a USB cable.

Follow the "Found New Hardware" wizard to install the driver, if necessary, as shown in the following example. You need to look for the *step3_user/DEWESOFT.inf* device driver information file in the TE0320 software package.

After successful installation of the specific device driver, TE0320 should be identified as "DEWESoft USB Device" and the Device Manager panel should look like Figure 50.

Figure 50: device manager after successful installation of the specific device driver.

Now the EZ-USB FX2LP USB microcontroller can be controlled from a computer by the DEWESoft API.

10.2.4 FWU file generation

In order to generate the FWU file you shall

- (a) generate a bit-stream file from your Xilinx EDK design;
- (b) generate a PROM file from the bit-stream file;
- (c) generate a FWU file from the PROM file.

10.2.4.1 bit-stream file from your Xilinx EDK design

In order to generate a <code>.bit</code> bit-stream file from your Xilinx EDK design, you shall

• open your ./system.xmp project file with Xilinx EDK;

select project / clean all generated files (optional);

• select hardware / generate bitstream.

This will generate the bit-stream file download.bit in the ./implementation/ folder of your "." project folder.

10.2.4.2 PROM file from the bit-stream file

In order to generate a .bin PROM file from the bit-stream file download.bit, start Xilinx iMPACT. The following example shows the case of Xilinx iMPACT 11.3.

New iMPACT Project I want to I want to I want to Cancel Cancel New impose the set of the se	Select <i>file / new project.</i> Choose <i>create a new project.</i> Press <i>OK</i> .
Welcome to iMPACT Please select an action from the last below Configure devices using Boundary-Scan (ITAG) Automatically connect to a cable and identify Boundary-Scan chain Prepare a PROM File Prepare a System ACE File Prepare a Boundary-Scan File VF Configure devices using Slave Serial mode OK Cancel	Select <i>prepare a PROM file.</i> Press <i>OK</i> .

Select *step 1. storage target / Xilinx Flash/PROM* of the left panel and press the left green arrow.

PROM File Formatter								X
Step 1. Select Storage Target		Step 2. Add	Storage Device(s)		Step 3,		Enter Da	ata
Storage Device Type :		Taxaah EDCA	Constant La		General File Detail		Value	
Xilinx Flash/PROM		Storage Device (bits):	512K		Checksum Fill Value	FF		
Grantangan 🕞 Spartangan 🕞		Add Storage Device	Remove Storage Device		Output File Name	Untitled		
Configure Single FPGA Configure MultiBoot FPGA					Output File Location	C:\Xilinx\		D
Configure Single FPGA					Flash/PROM Fil	e Property	Value	_
Configure from Paralleled PROMs				-	File Format		HEX	
					Use Power-of-2 for	Start Addr	No	
					Number of Bitstrea	n	2	
					Bitstream 0 Start A	ddress	0	
					Bitstream 1 Start A	ddress	675840	
					Add Non-Configura	tion Data Files	Yes	
					Number of Data File			
		Auto Select PROM			< 1			<u> </u>
Description:								
Conception The PROM File Formatter will guide you through the steps to format bitstream BIT files into a PROM file that is compatible with Xilinx® and third-party PROM programmers. The programmed PROM device can then be used to configure the target FPGA. Additional capabilities of the PROM File Formatter include: Generation PROM files containing specific EPGA configuration instructions required to sunnort deisy-chained EPGA bitstream BIT files.								
					<u>0</u> K	<u>C</u> an	cel Hel	P

Select *step 2. add storage device(s) / auto select PROM* of the middle panel and press the right green arrow.

🗞 PROM File Formatter									
Step 1. Select Storage Target		Step 2.	Add §	Storage Device(s)		Step 3,		Enter D	ata
Storage Device Type :		DD OM Esmilu	1	Natform Elach		General File Detail		Value	
Xilinx Flash/PROM		Device (bits)	l	xcf01s [1 M] V		Checksum Fill Value	FF		
SPI Flash		Add Storage Dev	/ice	Remove Storage Device		Output File Name	Untitled		
Configure Single FPGA Configure MultiBoot FPGA						Output File Location	C:\Xilinx\		Þ
Configure Single FPGA						Flash/PROM Fil	e Property	Value	
Configure from Paralleled PROMs						File Format		MCS	~
Generic Parallel PROM						Enable Revisioning		Yes	~
						Number Of Revision	ns		~
						Enable Compression	r	No	~
		Auto Select PRC	M						
Description:									
In this step, you will enter information to assist in setting up and generating a PROM file for the targeted storage device and mode. • Checksum fill Value: When data is insufficient to fil the entire memory of a PROM, the value specified here is used to calculate the checksum of the unused portions. • Output File Name: This allows you to specify the directory in which the file named above will be created • File Format: PROM files can be dependent of industry standerd formats. Depending on the PROM file format your PROM noncrammer uses. you output a TEK. QK Cancel Help									

In step 3. enter data of the right panel

- type *fpga* in the output file name input field;
- choose a suitable path for the output file location input field;
- •select BIN (swap bits ON) from the drop-down menu file format in the flash/PROM file property sub-panel;
- press the *or* button in the bottom left corner of the current window.

	icer otor age rai ger			ind otoric	90 0000000				Enter Bate
Storage Device Type :			PROM Family	Platfor	n Flash 🗸 🗸		General File Detail		Value
Xilinx Flash/PROM			Device (hits)	xcf01s	[1 M]		Checksum Fill Value	FF	
Spartan3AN							Output File Name	fpga	
Configure Single F Configure MultiBo	PGA bt FPGA		Add Storage Devi	Remov	e Scorage Device		Output File Location	C:/Daten	Į
Configure Single F	PGA at EPGA	_				_	Flash/PROM Fi	e Property	Value
Configure from Pa	ralleled PROMs					•	File Format		BIN (Swap Bits ON)
Generic Parallel PROM							Enable Revisioning		MCS
							Number Of Revisio	ns	TEK
							Enable Compressio	n	HEX (Swap Bits ON)
			Auto Select PRO	М					BIN (Swap Bits ON) BIN (Swap Bits OFF UFP ('C' format) ISC
escription:									
n this step, you will enter • Checksum Fill ¥ • Output File Nan • Output File Loca • File Format: PD(information to assist in setting alue: When data is insufficient te: This allows you to specify th ation: This allows you to specif Wiles can be generated in any	up and (to fill th le base i y the dir	generating a PROM file e entire memory of a PF name of the file to which ectory in which the file w of industry standard (or the targets tOM, the value n your PROM of named above	d storage device an e specified here is us lata will be written will be created wing on the PD/OM f	id mode. ed to cai	Iculate the checksun	of the unuse	d portions.

Just acknowledge the pup-up message.

Select operations / generate file... or double click generate file... from the iMPACT processes panel.

🐉 ISE iMPACT - [PROM File Formatter: Xili	nx Flash/PROM]					
🛞 File Edit View Operations Output Deb	ug Window Help	_ 8 ×				
🗄 📄 ờ 🕞 🗄 🔏 🛛 Access eFUSE Registers	▶ 🖬 🔑 K?					
iMPACT Flows Generate File		<u>^</u>				
Image: Second secon	PROM / FLASH	xc3sd1800a download.bit				
	PROM File Formatter: Xilinx Flash/PROM					
Console						
INFO: iMPACT: 501 - '1': Added Delta De	evice xc3sd1800a successfully.	<u> </u>				
Add one device.fa361						
		>				
Console Errors Warnings Generate System ACE or PFF file	PROM File Generation	arget Xilinx PROM 8,197,280 Bits used File: fpga in Location: C:\Daten/				
	· · · · ·					

You should see the following message in the main panel: generate succeeded.

								-
🐉 ISE iMPACT - [PROM File Formatter: X	ilinx F	lash/P	ROM]				
🐼 File Edit View Operations Output D	ebu <u>a</u>	<u>Wi</u> ndov	v <u>H</u> e	lp			-	Ξ×
ê 🗋 ờ 🛃 ê 🐲 - ê 🕾 🗉 ê 🖋 M?								
iMPACT Flows ↔								^
- 🔡 Boundary Scan					0×0000_0000			
SlaveSerial								
Suctor OF								
Create PROM File (PROM File Formatter)								
						vef08n		
						Actoop	vc3ed1800a	
							download.bit	
	1.1.1							
		-	_	download.bit				
		R O I	Sitstr					
IMPACT Processes ↔ □ 문 ×			eam					
Available Operations are:	1.1.1.1	Ast						
		-						
						*		
							Generate Succeeded	
					0×000F_FFFF			
								~
	-			PROM File Form	natter: Xilinx Flash/I	PROM		
Console							······································	38×
Writing file "C:\Daten\fpga.s	ig″.							~
Writing file "C:\Daten\fpga.c	fi".							
// *** BATCH CMD : setCurrent	Desig	n -v	ersi	on O				
<								>
Console Errors Warnings								
					PROM	File Genera	ation Target Xilinx PROM 8,197,280 Bits used File: fpga in Location: C:\Daten/	51 FL

You might now want to save your Xilinx iMPACT project settings for future use.

In the folder corresponding to the path you chose as the output file location, you should find the fpga.bin PROM file.

10.2.4.3 FWU file from the PROM file

Once you have got your fpga.bin PROM file, you can proceed and generate your FWU (= FirmWare Upgrade) file. The FWU file is a ZIP archive containing 3 files:

- Bootload.ini TE0320 booting settings (see paragraph 10.2.4.3.1 Bootload.ini file)
- fpga.bin FPGA configuration PROM file

usb.bin - EZ-USB FX2LP USB microcontroller firmware

To create your FWU file, you shall

- replace the existing step4_user\fpga.bin with the latest fpga.bin (once per design)
- zip the 3 files
- rename the zip file extension to fwu
- upload the file as explained in paragraph 10.2.5 Firmware Upgrade Tool utilization.

Warning! file and path names are given and must not be changed!

10.2.4.3.1 Bootload.ini file

The step4_user\Bootload.ini file defines some module start-up options. Version 1.0 of Bootload.ini has the following structure:

- [Info] information section (do not edit this section)
 - Version Bootload.ini file format version
 - DeviceType 3 stands for current device type
- [Settings]: settings section
 - FPGABitSwap see Xilinx UG332: Spartan-3 Generation Configuration User Guide, chapter SelectMAP Data Ordering (default = 1 = do bit swapping)
 - FPGAPowerON value of FX2_PS_EN after SPI Flash memory programming (see paragraph 6.8.2 Slide Switch S2) (default = 1 = power on after upgrade)

10.2.4.3.2 usb.bin file

The step4_user\usb.bin file contains the firmware to be written in the large EEPROM of the EZ-USB FX2LP USB microcontroller and loaded at module start-up to implement the DEWESoft instruction set.

10.2.5 Firmware Upgrade Tool utilization

10.2.5.1 Switch Settings

For the Firmware Upgrade Tool to operate correctly, switch S1 and S2 shall be set properly.

10.2.5.2 DIP Switch S1

Ensure that DIP switch S1 is set to

- USB microcontroller large EEPROM enabled (S1A set to ON)
- configuration mode set to Master SPI (S1B and S1C set to ON)

master reset disabled (S1D set to OFF)

S1	S1 label	signal	status
S1A	1	EEPROM serial data	ON
S1B	2	M2	ON
S1C	3	M1	ON
S1D	4	/MR (master reset)	OFF

Table 29: S1 settings for configuration via USB bus.

Figure 51: S1 settings for configuration via USB bus.

10.2.5.3 Slide Switch S2

Ensure that slide switch S2 is set to FX2 PON.

switch	signal	status
S2	PON / FX2 PON	FX2PON
Table 30:	: S2 settings f	or SPI FI

Figure 22: S2 settings for SPI Flash programming via USB bus (FX2 PON).

This will

- allow the EZ-USB FX2LP USB microcontroller to power off the FPGA,
- release the SPI lines driven by the FPGA and made them available to the EZ-USB FX2LP USB microcontroller
- allow the EZ-USB FX2LP USB microcontroller to program the SPI Flash memory.

10.2.5.4 FUT upgrade procedure

Open USB Firmware Upgrade Tool (double click step5_user\USBFirmwareUpgradeTool.exe).

🗟) USB Firmware Upgrade Tool		
Device: USB Device File name: File name: Image: USB EEPROM Image: USB EEPROM	Version: 4.1	Press the "" button corresponding to the File name:

Select a suitable . fwu firmware upload file.

The tool will then attempt to write the SPI Flash memory, if the corresponding box has been

If the FPGAPowerON bit in the Bootload.ini file was set to 1, the FPGA will try to configure from SPI Flash memory straight after successful completion of the FUT utilization.

If the FPGAPowerON bit in the Bootload.ini file was set to 0, the FPGA keep powered off.

10.3 Configuration Using Indirect SPI Configuration Mode

Similar to the traditional configuration memories, SPI serial Flash memories must be loaded with the configuration data. SPI serial Flash memories have a single interface for programming, but there are multiple methods to deliver the data to this interface. This section discusses the hardware setup, the PROM file generation flow and the software flow for ISP (indirect in-system programming) of a Trenz Electronic TE0320 SPI serial Flash configuration PROM through the JTAG interface of a Xilinx Spartan-3A DSP FPGA using Xilinx iMPACT 11.5.

To write the SPI Flash memory, perform the following steps:

- (a) disable the master reset S1D (do not care about all other switches at write time);
- (b) connect the Xilinx platform cable to JTAG connector J2 as described in paragraph 6.3.1 JTAG connector J2;
- (c) generate or locate the FPGA bit-stream file you want to store on the memory;
- (d) prepare an SPI PROM file using the ISE iMPACT graphical software from the FPGA bit-stream file;
- (e) use the ISE iMPACT graphical software to in-system program the SPI PROM.

In order to have the module to configure from its SPI Flash memory next time it is (re)booted, ensure one of following DIP switch settings:

switch	S1A (EEPROM serial data)	S1B (M2)	S1C (M1)	S1D (/MR master reset)	S2 (PS_EN)
state	0 = ON	0 = ON	0 = ON	1 = OFF	X = do note care
state	1 = OFF	0 = ON	0 = ON	1 = OFF	FX2 PON

Table 31: S1 settings for booting from SPI Flash memory.

For your convenience, a reference video is available on the TrenzElectronic's Channel at YouTube.

For further reference, please read Xilinx XAPP974: Indirect Programming of SPI Serial Flash PROMs with Spartan-3A FPGAs.

11 Recommended Design Tools Settings

11.1 DONE LED

When the configuration process successfully completes, the FPGA either actively drives the DONE pin High (*DriveDone*) or allows the DONE pin to float High using either an internal or external pull-up resistor, controlled by the *DonePin* bitstream generator option. To have DONE LED D1 lit after successful FPGA configuration, DriveDone and DonePin bitstream generator options for the DONE pin have to be set to have DONE actively driving its line (see Figure 52 and Table 32).

Figure 52: DriveDone and DonePin set to have DONE actively driving its line.

DriveDone defines whether the DONE pin is an active driver or an open-drain output.

DonePin defines whether or not the DONE pin has an internal pull-up resistor.

bitstream generator (BitGen) option	Setting
DriveDone	Yes
DonePin	Pullnone

Table 32: DriveDone and DonePin settings for having DONE actively driving its line.

See Xilinx UG332: Spartan-3 Generation Configuration User Guide (paragraph "DONE Pin") for additional information on these signals.

This options are set graphically in Xilinx ISE Software Project Navigator by selecting the following:

- Generate Programming File > Process Properties > Startup Options > Drive Done Pin High > check the box
- Generate Programming File > Process Properties > Configuration Options > Configuration Pin Done > float

Xilinx ISE Project Navigator option	setting
Drive Done Pin High	$\sqrt{(checked)}$
Configuration Pin Done	Float

Table 33: Xilinx ISE Project Navigator settings for having DONE actively driving its line.

Consult *ISE Help* about the Process Properties of the Generate Programming File process in the Processes pane for additional information on these properties.

11.2 Unused IOB Pins

All signals entering and exiting a Xilinx Spartan-3 generation FPGA must pass through the I/O resources, known as I/O blocks or IOBs. Users can specify the configuration for any unused IOB pins. This is the serial data outputs for all JTAG instruction and data registers.

This options are set graphically in Xilinx ISE Software Project Navigator by selecting the following:

 Generate Programming File > Process Properties > Configuration Options > Unused IOB Pins

Select an option from the drop-down list.

(a) Pull Down

Default. All unused I/O pins and input-only pins have a pull-down resistor to GND.

(b) Pull Up

All unused I/O pins and input-only pins have a pull-up resistor to the VCCO_# supply for its associated I/O bank.

(c) Float (also: Pullnone)

All unused I/O pins and input-only pins are left floating (Hi-Z, highimpedance, three-state). Use external pull-up or pulldown resistors or logic to apply a valid signal level.

11.3 CCLK Frequency

In SPI Flash mode, the FPGA's internal oscillator generates the configuration clock frequency. The FPGA provides this clock on its CCLK output pin, driving the PROM's Slave Clock input pin. The FPGA begins configuring using its lowest frequency setting. If so specified in the configuration bitstream, the FPGA increases the CCLK frequency to the specified setting for the remainder of the configuration process. The maximum frequency is specified using the ConfigRate bitstream generator option. The maximum frequency supported by the FPGA configuration logic depends on the timing for the SPI Flash device. For TE0320 SPI Flash PROM, use ConfigRate = 12 or lower.

This options are set graphically in Xilinx ISE Software Project Navigator by selecting the following:

 Generate Programming File > Process Properties > Configuration Options > Configuration Rate > 12 (or lower)

12 Reference Design Summaries (ISE 11.5)

12.1 Reference Design Summary for Xilinx Spartan-3A DSP 1800

platgen -p xc3sd1800afg676-4 -lang vhdl -lp x:/xxx/projects EDK/ system.mhs Release 11.5 - platgen Xilinx EDK 11.5 Build EDK LS5.70 (nt) Copyright (c) 1995-2009 Xilinx, Inc. All rights reserved. _____ Command Line: platgen -p xc3sd1800afg676-4 -lang vhdl -lp Running post-placement packing ... Design Summary: Number of errors: 0 Number of warnings: 1272 Logic Utilization: Number of Slice Flip Flops: 6,442 out of 33,280 8,291 out of 33,280 19% Number of 4 input LUTs: 24% Logic Distribution: Number of occupied Slices: 7,304 out of 16,640 43% Number of Slices containing only related logic: 7,304 out of Number of Slices containing unrelated logic: 0 out of 7,304 100% 0 out of 7,304 0% *See NOTES below for an explanation of the effects of unrelated logic. Total Number of 4 input LUTs: 8,663 out of 33,280 26% Number used as logic: 6,213 Number used as a route-thru: 372 Number used for Dual Port RAMs: 1,892 (Two LUTs used per Dual Port RAM) 186 Number used as Shift registers: The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails. Number of bonded IOBs: 119 out of 519 22% IOB Flip Flops: 39 IOB Master Pads: 2 2 IOB Slave Pads: Number of ODDR2s used: 44 Number of DDR ALIGNMENT = NONE 44 Number of DDR ALIGNMENT = C0 0 Number of DDR ALIGNMENT = C1 0 Number of BUFGMUXs: 5 out of 2.4 2.0% Number of DCMs: 1 out of 8 12% Number of BSCANs: 1 out of 1 100% 3 out of Number of DSP48As: 84 3% Number of RAMB16BWERs: 35% 30 out of 84 Number of BSCAN SPARTAN3As: 1 out of 1 100% Number of RPM macros: 1 Average Fanout of Non-Clock Nets: 3.56 _____

Initializing temperature to 85.000 Celsius. (default - Range: 0.000 to 85.000 Celsius) Initializing voltage to 1.140 Volts. (default - Range: 1.140 to 1.260 Volts)

Device speed data version: "PRODUCTION 1.33 2010-02-13".

Design Summary Report:

Number of External IOBs	119 out of 519	22%
Number of External Input IOBs	30	
Number of External Input IBUFs Number of LOCed External Input IBUFs	30 30 out of 30	100%
Number of External Output IOBs	43	
Number of External Output DIFFMs Number of LOCed External Output DIFFMs	2 2 out of 2	100%
Number of External Output DIFFSs Number of LOCed External Output DIFFSs	2 2 out of 2	100%
Number of External Output IOBs Number of LOCed External Output IOBs	39 39 out of 39	100%
Number of External Bidir IOBs	46	
Number of External Bidir IOBs Number of LOCed External Bidir IOBs	46 46 out of 46	100%
Number of BSCANs1Number of BUFGMUXs5Number of DCMs1Number of DSP48As3Number of RAMB16BWERs30Number of Slices7304Number of SLICEMs1156	out of 1 100% out of 24 20% out of 8 12% out of 84 3% out of 16640 43% out of 8320 13%	
Number of LOCed SLICEMs 83	out of 1156 7%	

Overall effort level (-ol): High Router effort level (-rl): High

12.2 Reference Design Summary for Xilinx Spartan-3A DSP 3400

platgen -p xc3sd3400afg676-4 -lang vhdl -lp x:/xxx/projects_EDK/ system.mhs Release 11.5 - platgen Xilinx EDK 11.5 Build EDK LS5.70 (nt) Copyright (c) 1995-2009 Xilinx, Inc. All rights reserved. _____ Command Line: platgen -p xc3sd3400afg676-4 -lang vhdl -lp Running post-placement packing ... Design Summary: Number of errors: 0 Number of warnings: 1272 Logic Utilization: Number of Slice Flip Flops: 6,442 out of 47,744 13% Number of 4 input LUTs: 8,290 out of 47,744 17% Logic Distribution: Number of occupied Slices: 7,889 out of 23,872 338 Number of Slices containing only related logic: 7,889 out of 7,889 0% 7,889 100% Number of Slices containing unrelated logic: 0 out of *See NOTES below for an explanation of the effects of unrelated logic. Total Number of 4 input LUTs: 8,662 out of 47,744 18% Number used as logic: 6,212 372 Number used as a route-thru: Number used for Dual Port RAMs: 1,892 (Two LUTs used per Dual Port RAM) Number used as Shift registers: 186 The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails. Number of bonded IOBs: 119 out of 469 25% IOB Flip Flops: 39 IOB Master Pads: 2 2 IOB Slave Pads: Number of ODDR2s used: 44 Number of DDR ALIGNMENT = NONE 44 Number of DDR ALIGNMENT = C0 0 Number of DDR ALIGNMENT = C1 0 Number of BUFGMUXs: 24 20% 5 out of 8 12% 1 100% Number of DCMs: 1 out of 1 out of 3 out of Number of BSCANs: Number of DSP48As: 126 2% 30 out of 23% Number of RAMB16BWERs: 126 Number of BSCAN_SPARTAN3As: 1 out of 1 100% Number of RPM macros: 1 Average Fanout of Non-Clock Nets: 3.56 _____

Initializing temperature to 85.000 Celsius. (default - Range: 0.000 to 85.000 Celsius) Initializing voltage to 1.140 Volts. (default - Range: 1.140 to 1.260 Volts)

Device speed data version: "PRODUCTION 1.33 2010-02-13".

Design Summary Report:

Number of External IOBs		119 out of 469	25%
Number of External Input IOBs		30	
Number of External Input IBUFs Number of LOCed External Input	IBUFs	30 30 out of 30	100%
Number of External Output IOBs		43	
Number of External Output DIFFMs Number of LOCed External Output	DIFFMs	2 2 out of 2	100%
Number of External Output DIFFSs Number of LOCed External Output	DIFFSs	2 2 out of 2	100%
Number of External Output IOBs Number of LOCed External Output	IOBs	39 39 out of 39	100%
Number of External Bidir IOBs		46	
Number of External Bidir IOBs Number of LOCed External Bidir	IOBs	46 46 out of 46	100%
Number of BSCANs Number of BUFGMUXs Number of DCMs Number of DSP48As Number of RAMB16BWERs Number of Slices Number of SLICEMs Number of LOCed Slices Number of LOCed SLICEMs	1 5 1 30 7889 1156 125 83	out of 1 100% out of 24 20% out of 8 12% out of 126 2% out of 126 2% out of 126 3% out of 11936 9% out of 7889 1% out of 1156 7%	

Overall effort level (-ol): High Router effort level (-rl): High

13 Verification

The quickest way to test most module functions is to execute the sample DMA test available in the TE0320_API_Example\Release folder of the TE0320 software package. Hereunder is reported a sample trace of a successful execution.

```
TE0320 DLL Example 1.0
        1 - Get number of modules
                                                        Major version: 1
        2 - Connect module No 0
                                                        Minor version: 7
        3 - Connect module No 1
        4 - Disconnect
                                                        Device hi: 1
        5 - Get FX2 status
                                                        Device lo: 1
        6 - Get FX2 version
        7 - Get FPGA firmware version
                                                        TE0320 DLL Example 1.0
        8 - Get FX2 FIFO Status
                                                               1 - Get number of modules
        9 - Reset FX2 FIFO Status
                                                                2 - Connect module No 0
        w - Write high speed data (FPGA RX)
                                                                3 - Connect module No 1
        r - Read high speed data (FPGA TX)
0 - Exit
                                                                4 - Disconnect
                                                                5 - Get FX2 status
                                                                6 - Get FX2 version
                                                                7 - Get FPGA firmware version
1
                                                                8 - Get FX2 FIFO Status
                                                                9 - Reset FX2 FIFO Status
                                                                w - Write high speed data (FPGA RX)
TE0320 DLL Example 1.0
                                                                r - Read high speed data (FPGA TX)
        1 - Get number of modules
                                                                0 - Exit
        2 - Connect module No 0
        3 - Connect module No 1
        4 - Disconnect
                                                        INT# : 1
        5 - Get FX2 status
                                                        Major version: 7
        6 - Get FX2 version
        7 - Get FPGA firmware version
                                                        Minor version: 1
        8 - Get FX2 FIFO Status
                                                        Release version: 2
        9 - Reset FX2 FIFO Status
                                                        Build version: 24
        w - Write high speed data (FPGA RX)
        r - Read high speed data (FPGA TX)
        0 - Exit
                                                        TE0320 DLL Example 1.0
                                                                1 - Get number of modules
2
                                                                2 - Connect module No 0
                                                                3 - Connect module No 1
TE0320 DLL Example 1.0
                                                                4 - Disconnect
        1 - Get number of modules
                                                                5 - Get FX2 status
        2 - Connect module No 0
                                                                6 - Get FX2 version
        3 - Connect module No 1
                                                                7 - Get FPGA firmware version
        4 - Disconnect
                                                                8 - Get FX2 FIFO Status
        5 - Get FX2 status
                                                                9 - Reset FX2 FIFO Status
        6 - Get FX2 version
                                                                w - Write high speed data (FPGA RX)
        7 - Get FPGA firmware version
                                                                r - Read high speed data (FPGA TX)
        8 - Get FX2 FIFO Status
                                                                0 - Exit
        9 - Reset FX2 FIFO Status
                                                        8
        w - Write high speed data (FPGA RX)
        r - Read high speed data (FPGA TX)
                                                        EP2 FIFO CS: 0x04
        0 - Exit
                                                        EP4 FIFO CS: 0x04
5
                                                        EP6 FIFO CS: 0x04
fifo error: 0
                                                        EP8 FIFO CS: 0x04
current mode: 1
                                                        EP2 FIFO BCH: 0x00
flash busy: 0
                                                        EP4 FIFO BCH: 0x00
fpga prog.: 170
                                                        EP6 FIFO BCH: 0x00
booting: 1
                                                        EP8 FIFO BCH: 0x00
TE0320 DLL Example 1.0
                                                        TE0320 DLL Example 1.0
        1 - Get number of modules
                                                               1 - Get number of modules
        2 - Connect module No 0
                                                                2 - Connect module No 0
        3 - Connect module No 1
                                                                3 - Connect module No 1
        4 - Disconnect
                                                                4 - Disconnect
        5 - Get FX2 status
                                                                5 - Get FX2 status
        6 - Get FX2 version
                                                                6 - Get FX2 version
        7 - Get FPGA firmware version
                                                                7 - Get FPGA firmware version
        8 - Get FX2 FIFO Status
                                                                8 - Get FX2 FIFO Status
        9 - Reset FX2 FIFO Status
                                                                9 - Reset FX2 FIFO Status
        w - Write high speed data (FPGA RX)
                                                                w - Write high speed data (FPGA RX)
        r - Read high speed data (FPGA TX)
                                                               r - Read high speed data (FPGA TX)
        0 - Exit
                                                                0 - Exit
```

9	6 - Get FX2 version
	7 - Get FPGA firmware version
Depatting all EIE0a	8 - Get FX2 FIFO Status
Resetting all FIFUS	9 - Reset FX2 FIFO Status
	w - Write high speed data (FPGA RX)
TE0320 DLL Example 1.0	r - Read high speed data (FPGA TX)
1 - Get number of modules	0 - Exit
2 - Connect module No 0	r
3 - Connect module No 1	
4 - Disconnect	Resetting all FIFOs
5 - Get FX2 status	Resetting all filles
6 - Get FX2 version	
/ - Get FPGA firmware version	memory->host data verification PASSED!!!
8 - Get FAZ FIFO Status 9 - Decet FX2 FIFO Status	Transferred 120000 kB in 3.268 s = 35.861 MB/s
9 - Reset FAZ FIFO Status	
w - Wille High speed data (FPCA TA)	TE0320 DLL Example 1.0
0 - Exit	1 - Get number of modules
	2 - Connect module No 0
W	3 - Connect module No 1
	4 - Disconnect
Resetting all FIFOs	5 - Get FX2 status
host->memory data verification PASSED!	6 - Get FX2 version
Transferred 120000 kB in 4.048 s = 28.953 MB/s	7 - Get FPGA firmware version
	8 - Get FX2 FIFO Status
TEO220 DIL Evennlo 1 0	9 - Reset FX2 FIFO Status
1 - Cot number of modulos	w - Write high speed data (FPGA RX)
2 - Connect module No 0	r - Read high speed data (FPGA TX)
3 - Connect module No 1	0 - Exit
4 - Disconnect	0
5 - Get FX2 status	Drücken Sie eine beliebige Taste

14 High Resolution Pictures

- (a) Figure 53: TE0320 high resolution top view.
- (b) Figure 54: TE0320 high resolution bottom view.
- (c) Figure 55: TE0320 angle view.

14.1 Top View

Figure 53: TE0320 high resolution top view.

14.2 Bottom View

Figure 54: TE0320 high resolution bottom view.

14.3 Angle View

Figure 55: TE0320 angle view.

15 Ordering Information

Boards with other configurations or equipped with industrial temperature grade parts are available on request.

15.1 Product Identification System

Trenz Electronic TE0320 series modules have the following ordering numbers:

TE0320	-	XX	-	Y Y
module		PCB		assembly
series		revision		option

15.2 Assembly Options Overview

module	FPGA device	power supply source	VccclO0	mnemonics
TE0320-00-EV01	XC3SD1800A-4FGG676C	USB	3.3 V	evaluation
TE0320-00-EV02	XC3SD1800A-4FGG676C	B2B	3.3 V	evaluation
TE0320-00-EV02B	XC3SD3400A-4FGG676C	B2B	3.3 V	evaluation, big

Table 34: assembly options overview.

To determine the FPGA device, you just read the code on the package under the "Xilinx Spartan" label.

To determine the power supply source, please see paragraph 5.2 Power Supply Sources.

To determine the VcccIO0 voltage, please see paragraph 5.3 On-Board Power Rails.

To determine PCB revision and assembly variant from FPGA, TE0320 have dedicated user signals, which can be read by user core.

0 ,	
Board revision coded in 4 bits	REV[3:0]

Signal name	FPGA pin
REV0	C21
REV1	D21
REV2	E21
REV3	C20

Table 35: Board revision pins

To define low (zero) level REV pin connected to ground rail, to define high (one) level REV pin left float (open). These pins should be configured with "pullup" option in user design.

See Table 12 for current list of board revisions.

REV3	REV2	REV1	REV0	Board revision
1	1	1	1	Revision 00

Table 36: Board revisions

Module assembly variant encoded using VAR[5:0] pins.

Signal name	FPGA pin
VAR0	F17
VAR1	K16
VAR2	J16
VAR3	E17
VAR4	D20
VAR5	A20

Table 37: Assembly variants pins

To define low (zero) level VAR pin connected to ground rail through zero resistor, to define high (one) level VAR pin left float (open). These pins should be configured with "pullup" option in user design.

Available module assembly variants listed in Table 38.

VAR5	VAR4	VAR3	VAR2	VAR1	VAR0	Variant
1	1	1	1	1	1	EV01
1	1	1	1	1	0	EV02

 Table 38: Module assembly variants

15.3 Availability

For the latest product details and available options, please visit

www.trenz-electronic.de

To order or obtain information, e.g. on pricing or delivery, please visit:

shop.trenz-electronic.de

16 Product Support

Trenz Electronic provides support via its site at

```
www.trenz-electronic.de  support
```

This web site is used as a means to make files and information easily available to customers. It contains the following information:

- product support
 - data sheets
 - errata
 - application notes
 - sample programs
 - design resources
 - user's guides
 - hardware support documents
 - Iatest software releases
 - archived software
- general technical support
 - Frequently Asked Questions (FAQ)
 - technical support requests
- business of Trenz Electronic
 - product selector
 - ordering guides
 - Iatest press releases
 - listing of events
 - Istings of business partners
- video archive
 - TrenzElectronic's Channel at YouTube

17 Related Materials and References

The following documents provide supplementary information useful with this user manual.

17.1 Data Sheets

- Xilinx DS485: Digital Clock Manager (DCM) Module Data Sheet This is the data sheet for the Digital Clock Manager (DCM) Module core. www.xilinx.com/support/documentation/ip_documentation/dcm_module.pdf
- Xilinx DS610: Spartan-3A DSP FPGA Family: Complete Data Sheet The Spartan®-3A DSP family of Field-Programmable Gate Arrays (FPGAs) solves the design challenges in most high-volume, cost-sensitive, highperformance DSP applications.
 www.xilinx.com/support/documentation/data_sheets/ds610.pdf

17.2 User Guides

- Xilinx UG331: Spartan-3 Generation FPGA User Guide Functional description of the Spartan®-3 generation FPGA architecture and how to use it. Includes the Spartan-3A, Spartan-3AN, Spartan-3A DSP, Spartan-3E, and Spartan-3 platforms.
 www.xilinx.com/support/documentation/user_guides/ug331.pdf
- Xilinx UG332: Spartan-3 Generation Configuration User Guide Describes the configuration features of the Spartan®-3 Generation FPGAs. Includes the Spartan-3A, Spartan-3AN, Spartan-3A DSP, Spartan-3E, and Spartan-3 FPGA families.

www.xilinx.com/support/documentation/user_guides/ug332.pdf

 EZ-USB® Technical Reference Manual (TRM) www.cypress.com/?rID=14667

17.3 Tutorials

- (Xilinx) ISE (10.1) In-Depth Tutorial Chapter 7: iMPACT Tutorial www.xilinx.com/direct/ise10_tutorials/ise10tut.pdf
- Xilinx UG695: ISE In-Depth Tutorial Chapter 7: iMPACT Tutorial http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise11tut.pdf

17.4 Application Notes

- Xilinx XAPP104: A Quick JTAG ISP Checklist Most Xilinx CPLDs, PROMs, and FPGAs have an IEEE Standard 1149.1 (JTAG) port. Xilinx devices with a JTAG port are in-system programmable (ISP) through the JTAG port. The ISP feature is beneficial for fast prototype development. This application note describes a short list of considerations needed to get the best performance from your ISP designs. www.xilinx.com/support/documentation/application_notes/xapp104.pdf
- Xilinx XAPP974: Indirect Programming of SPI Serial Flash PROMs with Spartan-3A FPGAs

This application note describes how to indirectly program an SPI Serial Flash PROM through the JTAG interface of a Spartan®-3A FPGA using iMPACT 9.1.01i. The hardware setup, software flows for file generation, and programming are also covered.

www.xilinx.com/support/documentation/application_notes/xapp974.pdf

 ISP Standards & Specifications Brief descriptions of In-system Programmability (ISP) standards and specifications www.xilinx.com/products/design_resources/config_sol/isp_standards_specs.ht m
18 B2B Connectors Pin Descriptions

This section describes how the various pins on B2B connectors JM4 and JM5 connect with TE0320 on-board components. In this chapter, most of naming conventions and colour coding scheme are taken from the official Xilinx Spartan-3A DSP documentation.

18.1 Pin Labelling

The pin label is abbreviated but descriptive for each pin. All I/O pins begin with IO. If a pin can be used as a differential signal, the name includes an _Lxxy_b suffix, where

- L indicates that the pin is part of a differential pair
- xx is a two-digit integer, unique for each bank, that identifies a differential pinpair
- y is the signal polarity and is replaced by P for the positive signal or N for the negative. These two pins form one differential pin-pair
- b is an integer, 0 through 2 for TE0320, indicating the associated I/O bank.

Dual- or multi-purpose pins have a name composed of the signal names referring to each possible pin function (e. g. IO_L52P_2 / D0 / DIN / MISO). _B is used as the active-Low designator, as in CSI_B.

A differential clock input requires two global clock inputs. The P and N inputs follow the same configuration as for standard inputs on those pins. The clock inputs that get paired together are consecutive pins in clock number, an even clock number and the next higher odd value. For example, GCLK0 and GCLK1 are a differential pair.

18.2 Pin Types

Most pins of B2B connectors JM4 and JM5 are general-purpose, user-defined I/O pins (GPIOs). There are, however, up to 9 different functional types of pins on the TE0320, as outlined in Table 39. In pin-out tables 40 and 41, the individual pins are colour-coded according to pin type as in Table 39.

type colour code	description
I/O	Unrestricted, general-purpose user-I/O pin. Most pins can be paired together to form differential I/Os.
DUAL	Dual-purpose pin used in some configuration modes during the configuration process and then usually available as a user I/O after configuration. If the pin is not used during configuration, this pin behaves as an I/O-type pin. See Xilinx UG332: Spartan-3 Generation Configuration User Guide for additional information on these signals.
VREF	VREF0 provides a reference voltage input for certain I/O standards. See paragraph 6.9 Voltage Reference VREF0 for additional information on this signal.
CLK	Either a user-I/O pin or an input to a specific clock buffer driver. Packages have 16 global clock inputs that optionally clock the entire device. See the Using Global Clock Resources chapter in UG331: Spartan-3 Generation FPGA User Guide for additional information on these signals.
CONFIG	Dedicated configuration pin, two per device. Not available as a user-I/O pin. Every package has two dedicated configuration pins. These pins are powered by VCCAUX. See Xilinx UG332: Spartan-3 Generation Configuration User Guide for additional information on these signals.
PWRMGMT	Control and status pins for the power-saving Suspend mode. SUSPEND is a dedicated pin and is powered by VCCAUX. AWAKE is a Dual-Purpose pin. Unless Suspend mode is enabled in the application, AWAKE is available as a user-I/O pin.
JTAG	Dedicated JTAG pin - 4 per device. Not available as a user-I/O pin. Every package has four dedicated JTAG pins. These pins are powered by VCCAUX.

GND	Dedicated ground pin. All must be connected.
TE	Trenz Electronic specific pin type. See the description of each pin in the user manual for additional information on the corresponding signals.

Table 39: types of pins on TE0320.

18.3 B2B Connectors Pin-Out

18.3.1 JM4 Pin-Out

sup	bank	tupo	FPGA	FPGA	JM4	JM4	pin	JM 4	FPGA	FPGA	tupo	bank	sup
ply	Dalik	type	pin	ball	singal	51014	pin	singal	ball	pin	type	Dallk	ply
3.3 V	-	out	-	-	3.3V	1	2	GND	-	-	GND	GND	GND
VccclO0	0	I/O	IO_L20P_0	F15	JM4-1001	3	4	B2B_D_P	-	-	٧O	-	USB
VccclO0	0	I/O	IO_L21N_0	C16	JM4-1002	5	6	B2B_D_N	-	-	VO	-	USB
GND	GND	GND	-	-	GND	7	8	JM4-1034	K12	IO_L39N_0	٧O	0	VccclO0
VccclO0	0	I/O	IO_L21P_0	D17	JM4-1003	9	10	JM4-1035	J12	IO_L39P_0	٧O	0	VccclO0
VccclO0	0	I/O	IO_L22N_0	C15	JM4-1004	11	12	JM4-1036	D8	IO_L40N_0	٧O	0	VccclO0
VccclO0	0	I/O	IO_L22P_0	D16	JM4-1005	13	14	JM4-1037	C8	IO_L40P_0	٧O	0	VccclO0
VccclO0	0	I/O	IO_L23N_0	A15	JM4-1006	15	16	GND	-	-	GND	GND	GND
VccclO0	0	I/O	IO_L23P_0	B15	JM4-1007	17	18	JM4-1038	C6	IO_L41N_0	٧O	0	VccclO0
VccclO0	0	I/O	IO_L24N_0	F14	JM4-1008	19	20	JM4-1039	B6	IO_L41P_0	٧O	0	VccclO0
VccclO0	0	I/O	IO_L24P_0	E14	JM4-1009	21	22	JM4-1040	C7	IO_L42N_0	٧O	0	VccclO0
GND	GND	GND	-	-	GND	23	24	JM4-1041	B7	IO_L42P_0	VO	0	VccclO0
VccclO0	0	VO GCLK	IO_L25N_0 GCLK5	J14	JM4-1010	25	26	JM4-1042	K11	IO_L43N_0	٧O	0	VccclO0
VccclO0	0	VO GCLK	IO_L25P_0 GCLK4	K14	JM4-1011	27	28	JM4-1043	J11	IO_L43P_0	VO	0	VccclO0
VccclO0	0	VO GCLK	IO_L26N_0 GCLK7	A 14	JM4-1012	29	30	VccclO0	-	-	VO	0	VccclO0
VccclO0	0	VO GCLK	IO_L26P_0 GCLK6	B14	JM4-1013	31	32	JM4-1044	D6	IO_L44N_0	VO	0	VccclO0
VccclO0	0	VO GCLK	IO_L27N_0 GCLK9	G13	JM4-1014	33	34	JM4-1045	C5	IO_L44P_0	VO	0	VccclO0
VccclO0	0	VO GCLK	IO_L27P_0 GCLK8	F13	JM4-1015	35	36	JM4-1046	B4	IO_L45N_0	VO	0	VccclO0
VREF	0	in	-	-	VREF0	37	38	JM4-1047	A4	IO_L45P_0	٧O	0	VccclO0
VccclO0	0	VO GCLK	IO_L28N_0 GCLK11	C13	JM4-1016	39	40	JM4-1048	H10	IO_L46N_0	VO	0	VccclO0
VccclO0	0	VO GCLK	IO_L28P_0 GCLK10	B13	JM4-1017	41	42	JM4-1049	G10	IO_L46P_0	VO	0	VccclO0
VccclO0	0	I/O	IO_L29N_0	B12	JM4-1018	43	44	VccclO0	-	-	VO	0	VccclO0
VccclO0	0	I/O	IO_L29P_0	A12	JM4-IO19	45	46	JM4-1050	H9	IO_L47N_0	٧O	0	VccclO0
VccclO0	0	I/O	IO_L30N_0	C12	JM4-1020	47	48	JM4-1051	G9	IO_L47P_0	٧O	0	VccclO0
VccclO0	0	I/O	IO_L30P_0	D13	JM4-1021	49	50	JM4-1052	E7	IO_L48N_0	٧O	0	VccclO0
GND	GND	GND	-	-	GND	51	52	JM4-1053	F7	IO_L48P_0	٧O	0	VccclO0
VccclO0	0	I/O	IO_L33N_0	B10	JM4-1022	53	54	JM4-1054	B3	IO_L51N_0	VO	0	VccclO0
VccclO0	0	I/O	IO_L33P_0	A 10	JM4-1023	55	56	JM4-1055	A3	IO_L51P_0	٧O	0	VccclO0
VccclO0	0	I/O	IO_L34N_0	D10	JM4-1024	57	58	GND	-	-	GND	GND	GND
VccclO0	0	I/O	IO_L34P_0	C10	JM4-1025	59	60	JM4-1056	C23	IO_L06N_0	٧O	0	VccclO0
VccclO0	0	٧O	IO_L35N_0	H12	JM4-1026	61	62	JM4-1057	D23	IO_L06P_0	VO	0	VccclO0
VccclO0	0	١/O	IO_L35P_0	G12	JM4-1027	63	64	JM4-1058	A22	IO_L07N_0	٧O	0	VccclO0
GND	GND	GND	-	-	GND	65	66	JM4-1059	B23	IO_L07P_0	VO	0	VccclO0
VccclO0	0	V0	IO_L36N_0	B9	JM4-1028	67	68	JM4-1060	G17	IO_L08N_0	VO	0	VccclO0
VccclO0	0	I/O	IO_L36P_0	A9	JM4-1029	69	70	JM4-1061	H17	IO_L08P_0	VO	0	VccclO0
VccclO0	0	I/O	IO_L37N_0	D9	JM4-1030	71	72	VccAux	-	-	out	VccAux	VccAux
VccclO0	0	VO VO	IO_L37P_0	E10	JM4-1031	73	74	TDI	G7	TDI	JTAG	VccAux	VccAux
VccclOO	0	1/0	IU_L38N_0	B8	JM4-1032	75	76	TDO	E23	TDO	JIAG	VccAux	VccAux
VccclOO	0	1/0	IO_L38P_0	A8	JM4-1033	77	78	TCK	D4	TCK	JIAG	VccAux	VccAux
GND	GND	GND			GND	79	80	IMS	A25	IMS	JIAG	VccAux	VccAux

Table 40: pin-out of B2B connector JM4.

18.3.2 JM5 Pin-Out

sup	hank		FPGA	FPGA	JM 5	IM 5		JM 5	FPGA FPGA		A 1110 A	hank	sup
ply	bank	туре	pin	ball	singal	JIVI 5	pin	singal	ball	pin	туре	bank	ply
TE	-	in	-	-	Vb2b	1	2	Vb2b	-	-	in	-	TE
TE	-	in	-	-	Vb2b	3	4	Vb2b	-	-	in	-	TE
3.3V	1	VO (I2C)	IO_L13P_1	Y22	SCL	5	6	/MR	-	-	in	-	3.3V
3.3V	1	1/O (12C)	IO_L13N_1	Y23	SDA	7	8	/RESET	A2	PROG_B	in CONFIG	2	VccAux 3.3V
GND	GND	GND			GND	9	10	DONE	AB21	DONE	out CONFIG	VccAux	VccAux
3.3V	2	VO DUAL	IO_L22N_2 DOUT	AE15	DOUT	11	12	SPI_D	AB15	IO_L30N_2 MOSI/CSI_B	SPI in DUAL	2	3.3V
3.3V	2	VO DUAL	IO_L01N_2 M0	AD4	MO	13	14	INIT_B	AA15	IO_L34P_2 INIT_B	VO DUAL	2	3.3V
3.3V	2	VO DUAL	Ю_L01P_2 M1	AC4	M1	15	16	Vsup	-	-	out	-	TE
3.3V	2	VO DUAL	10_L02P_2 M2	¥7	M2	17	18	SPI_Q	AF24	IO_L52P_2 D0/DIN/MISO	SPI out DUAL	2	3.3V
3.3V	2	VO DUAL	IO_L07P_2 RDWR_B	Y12	RDWR_B	19	20	SPI_/S	AA7	IO_L02N_2 CSO_B	SPI out DUAL	2	3.3V
VccAux	VccAux	in CONFIG	PROG_B	A2	B2B_PROGB	21	22	SPI_/C	AE24	IO_L52N_2 CCLK	SPI out DUAL	2	3.3V
3.3 V	-	out	-	-	3.3V	23	24	D4	AE12	IO_L24N_2 D4	VO DUAL	2	3.3V
3.3V	2	i/o Pwrmgmt	IO_L22P_2 AWAKE	AD15	AWAKE	25	26	D5	AF12	IO_L24P_2 D5	VO DUAL	2	3.3V
VccAux	VccAux	in PWRMGMT	SUSPEND	V20	SUSPEND	27	28	D6	AF10	IO_L22N_2 D6	VO DUAL	2	3.3V
3.3V	2	I/O DUAL	IO_L36N_2 D1	AE18	D1	29	30	GND	-	-	GND	GND	GND
3.3V	2	VO DUAL	IO_L36P_2 D2	AF18	D2	31	32	D7	AE10	IO_L22P_2 D7	VO DUAL	2	3.3V
3.3V	2	VO DUAL	IO_L34N_2 D3	Y15	D3	33	34	J5-1020	AA18	IO_L47N_2	I/O	2	3.3V
3.3V	2	VO GCLK	IO_L27P_2 GCLK0	Y 14	J5-IO01	35	36	J5-1021	AB18	10_L47P_2	٧O	2	3.3V
GND	GND	GND	-		GND	37	38	J5-1022	AE23	IO_L48N_2	VO	2	3.3V
3.3V	2	VO GCLK	IO_L28P_2 GCLK2	AF14	J5-1002	39	40	J5-1023	AF23	IO_L48P_2	٧O	2	3.3V
3.3V	2	VO	IO_L29N_2	AC14	J5-1003	41	42	J5-1024	AE25	IO_L51P_2	VO	2	3.3V
3.3V	2	10	IO_L39N_2	AE20	J5-1004	43	44	1.2V	- A E 25	- 10 51P 2		- 2	1.2 V 3.3\/
3.31	2	1/O	IO_L39F_2	ΔC10	15-1005	43	40	15-1025	VQ	IO_LOTF_2	1/0	2	3.31
3.3V	2	VO	IO 140P 2	AD19	15-1007	49	50	J5-1020	W9	IO 105P 2	1/O	2	3.3V
GND	GND	GND	-	-	GND	51	52	J5-1028	AF3	IO L06N 2	VO	2	3.3V
3.3V	2	٧O	IO_L41N_2	AC20	J5-IO08	53	54	J5-1029	AE3	IO_L06P_2	٧O	2	3.3V
3.3V	2	٧O	IO_L41P_2	AD20	J5-1009	55	56	J5-1030	AF4	IO_L07N_2	٧O	2	3.3V
3.3V	2	VO	IO_L42N_2	U16	J5-IO10	57	58	GND	-	-	GND	GND	GND
3.3V	2	VO VO	IO_L42P_2	V16	J5-I011	59	60	J5-1031	AE4	IO_L07P_2	VO	2	3.3V
3.3V	2	1/0	IO_L43N_2	Y1/	J5-I012	61	62	J5-1032	AD6	IO_L08N_2	1/0	2	3.3V
3.3V	2		10_L43P_2	AAT	J5-I013	65	66	J5-1033	AC6		1/0	2	3.3V
2.5 V	2		- IO 44N 2	AD21	J5-I014	67	68	15-1034	V10	IO 109P 2	1/O	2	3.3V
3.3V	2	VO	IO_L44P_2	AE21	J5-IO15	69	70	J5-1036	Y13	IO_L25N_2	VO	2	3.3V
3 31/	2	I/O	IO 1.45N 2	AC21	15-1016	71	72	GND		GCLK13	GND	GND	GND
0.0 V	<u> </u>			7.021	00-1010		12			IO 125P 2			
3.3V	2	٧O	IO_L45P_2	AD22	J5-IO17	73	74	J5-IO37	AA13	GCLK12	GCLK	2	3.3V
3.3V	2	VO	IO_L46N_2	V17	J5-IO18	75	76	J5-1038	AE13	GCLK15	GCLK	2	3.3V
3.3V	2		IO_L46P_2	W17	J5-IO19	77	78	J5-1039	AF13	GCLK14	GCLK	2	3.3V
GND	GND	GND			GND	19	ÖÜ	1 33-1040	1 113		I 1/U	I Z	∣ 3.3V

Table 41: pin-out of B2B connector JM5.

18.4 Signal Integrity Considerations

Traces of differential signals pairs are NOT routed symmetrically (as symmetric pairs).

Traces of differential signals pairs are NOT routed with equal length. For applications where traces length has to be matched or timing differences have to be compensated, Table 42 and Table 43 list the trace length of I/O signal lines measured from FPGA balls to B2B connector pins.

Traces of differential signals pairs are routed with a differential impedance between the two traces of 60 ohm.

Pairs of pins that form a differential I/O pair appear colored together in the table. An electronic version of these pin-out tables are available for download from the Trenz Electronic support area of the web site.

18.4.1 JM4 Signals Trace Length

len.	FPGA	FPGA	JM4	JM4	pin	JM4	FPGA	FPGA	len.
mm	pin	ball	singai			singai	ball	pin	mm
		E45		1	2				
26	IO_L20P_0	F15	JIVI4-IO01	3	4				
29	10_L21N_0	010	JIVI4-1002	5	0		K10		20
26		D17		7	0	JIVI4-1034	112		29
20		C15	JIVI4-1003	9	10	JIVI4-1035			20
24		D16	JM4-1004	12	14	JIVH-1030	0		20
20		A 15	JM4-1005	15	14	JIVH-1037	00		24
20	IO_L23R_0	B15	JM4-1000	17	18	IM4-1038	C6		24
22	IO 1 24N 0	F14	.IM4-1008	19	20	JM4-1039	B6	IO 141P 0	24
18	IO 1 24P 0	F14	.IM4-IO09	21	22	.IM4-IQ40	C7	IO 142N 0	23
10				23	24	JM4-IQ41	B7	IO 142P 0	19
20	IO_L25N_0	J14	JM4-1010	25	26	JM4-IO42	K11	IO L43N 0	24
	GCLK5								
21	IO_L25P_0 GCLK4	K14	JM4-1011	27	28	JM4-1043	J11	10_L43P_0	23
11	IO_L26N_0 GCLK7	A14	JM4-1012	29	30				
11	IO_L26P_0 GCLK6	B14	JM4-1013	31	32	JM4-1044	D6	IO_L44N_0	15
17	IO_L27N_0 GCLK9	G13	JM4-1014	33	34	JM4-1045	C5	IO_L44P_0	14
16	IO_L27P_0 GCLK8	F13	JM4-1015	35	36	JM4-1046	B4	IO_L45N_0	15
				37	38	JM4-1047	A4	IO_L45P_0	14
13	IO_L28N_0 GCLK11	C13	JM4-IO16	39	40	JM4-1048	H10	IO_L46N_0	14
12	IO_L28P_0 GCLK10	B13	JM4-1017	41	42	JM4-1049	G10	IO_L46P_0	14
14	IO_L29N_0	B12	JM4-1018	43	44				
14	IO_L29P_0	A12	JM4-1019	45	46	JM4-1050	H9	IO_L47N_0	15
27	IO_L30N_0	C12	JM4-1020	47	48	JM4-1051	G9	IO_L47P_0	14
30	IO_L30P_0	D13	JM4-1021	49	50	JM4-1052	E7	IO_L48N_0	13
				51	52	JM4-1053	F7	IO_L48P_0	15
20	IO_L33N_0	B10	JM4-1022	53	54	JM4-1054	B3	IO_L51N_0	9
17	IO_L33P_0	A10	JM4-1023	55	56	JM4-1055	A3	IO_L51P_0	9
20	IO_L34N_0	D10	JM4-1024	57	58				
21	IO_L34P_0	C10	JM4-1025	59	60	JM4-1056	C23	IO_L06N_0	36
29	10_L35N_0	H12	JIVI4-1026	61	62	JIVI4-IO57	D23		42
30	IO_L35P_0	G12	JIVI4-1027	63	64	JIVI4-IO58	A22		36
07		DO		65	60	JIVI4-1059	B23		41
27	IO_L36N_0	89	JIVI4-1028	60	70	JIVI4-1060	G1/		30
21		A9 D0		71	70	JIV14-1001			- 39
20		D9		72	74				
20		B8		75	76				
28		Δ8	.IM4_IO33	77	78				
20	.0_1001_0	7.0		79	80				
	I		l		00	I			

Table 42: trace length of signal pins of B2B connector JM4.

18.4.2 JM5 Signals Trace Length

len. mm	FPGA pin	FPGA ball	JM5 singal	JM 5	pin	JM5 singal	FPGA ball	FPGA pin	len. mm
				1	2			•	
				3	4				
				5	6				
				7	8				
				9	10				
21	IO_L22N_2 DOUT	AE15	DOUT	11	12	SPI_D	AB15	IO_L30N_2 MOSI/CSI_B	51
35	IO_L01N_2 M0	AD4	MO	13	14	INIT_B	AA15	IO_L34P_2 INIT_B	51
49	IO_L01P_2 M1	AC4	M1	15	16				
49	IO_L02P_2 M2	Y7	M2	17	18	SPI_Q	AF24	IO_L52P_2 D0/DIN/MISO	52
23	IO_L17P_2 RDWR_B	Y 12	RDWR_B	19	20	SPI_/S	AA7	IO_L02N_2 CSO_B	95
				21	22	SPI_/C	AE24	IO_L52N_2 CCLK	75
				23	24	D4	AE12	IO_L24N_2 D4	14
10	IO_L22P_2 AWAKE	AD15	AWAKE	25	26	D5	AF12	IO_L24P_2 D5	13
				27	28	D6	AF10	IO_L22N_2 D6	15
7	IO_L36N_2 D1	AE18	D1	29	30				
7	IO_L36P_2 D2	AF18	D2	31	32	D7	AE10	IO_L22P_2 D7	16
13	IO_L34N_2 D3	Y 15	D3	33	34	J5-1020	AA18	IO_L47N_2	22
13	IO_L27P_2 GCLK0	Y 14	J5-IO01	35	36	J5-IO21	AB18	IO_L47P_2	16
				37	38	J5-1022	AE23	IO_L48N_2	20
9	IO_L28P_2 GCLK2	AF14	J5-1002	39	40	J5-1023	AF23	IO_L48P_2	23
12	IO_L29N_2	AC14	J5-IO03	41	42	J5-IO24	AE25	IO_L51P_2	26
17	IO_L39N_2	AE20	J5-1004	43	44				
19	IO_L39P_2	AF20	J5-1005	45	46	J5-1025	AF25	IO_L51P_2	34
21	IO_L40N_2	AC19	J5-1006	47	48	J5-1026	Y9	IO_L05N_2	20
- 22	IO_L40P_2	AD19	J5-IO07	49	50	J5-1027	VV9	IO_L05P_2	20
07		A 000	15 1000	51	52	J5-IO28	AF3	10_L06N_2	10
21		AC20	J5-1008	55	56	J5-I029	AE3		11
20		1116	15-1010	57	58	33-1030	AF4		
30	IQ 142P 2	V16	J5-I011	59	60	J5-I031	AF4		17
36	IQ 143N 2	Y17	J5-I012	61	62	J5-I032	AD6	IQ 1.08N 2	21
36	IO L43P 2	AA17	J5-1013	63	64	J5-1033	AC6	IO L08P 2	26
				65	66	J5-1034	W10	IO L09N 2	31
44	IO_L44N_2	AD21	J5-IO14	67	68	J5-1035	V10	IO_L09P 2	38
39	IO_L44P_2	AE21	J5-IO15	69	70	J5-1036	Y13	IO_L25N_2 GCLK13	43
43	IO_L45N_2	AC21	J5-IO16	71	72				
47	IO_L45P_2	AD22	J5-I017	73	74	J5-1037	AA13	IO_L25P_2 GCLK12	40
44	IO_L46N_2	V17	J5-IO18	75	76	J5-IO38	AE13	IO_L26N_2 GCLK15	32
45	IO_L46P_2	W17	J5-IO19	77	78	J5-IO39	AF13	IO_L26P_2 GCLK14	35
				79	80	J5-IO40	W13	IO_L20N_2	44

Table 43: trace length of signal pins of B2B connector JM5.

19 Glossary of Abbreviations and Acronyms

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

A CAUTION notice denotes a risk. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in a fault. (undesired condition that can lead to an error) Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

API	application programming interface
B2B	board-to-board
DSP	digital signal processing; digital signal processor
EDK	Embedded Development Kit
FUT	Firmware Upgrade Tool
FWU	Firmware Upgrade file
ЮВ	input / output blocks; I/O blocks
IP	intellectual property
ISP	In-System Programmability
РВ	push button
SDK	Software Development Kit
TE	Trenz Electronic
XPS	Xilinx Platform Studio

20 Legal Notices

20.1 Document Warranty

The material contained in this document is provided "as is" and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein.

20.2 Limitation of Liability

In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof.

20.3 Copyright Notice

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.

20.4 Technology Licenses

The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license.

21 Document Change History

ver.	date	author	description
1.00	2009-10-22	FDR	Release.
2.00	2009-12-16	FDR	Added USB over B2B connector. Added S1 description. Added JTAG interface. Added I2C bus description. Added SPI bus description. Added VREF0 description. Added LEDs, buttons and switches description. Added clock networks. Added on-board memories description. Added on-board memories description. Added configuration options. Improved Bootload.ini file description. Added YouTube reference to product support. Added JM4 and JM5 pin-out tables. Added signal integrity considerations. Improved system requirements. Added glossary Introduced some other minor changes.
2.01	2010-01-18	FDR	Updated number of FPGA I/O pins. Removed TE0320-00B-EV01.
2.02	2010-01-19	FDR	Updated some software package paths. Corrected pin name of JM5 signal RDWR_B (ball Y12). SPI_/S and SPI_/C pins of connector JM5 were swapped in pin-out and trace length tables.
2.03	2010-01-20	FDR	Added legal notices.
2.04	2010-05-17	FDR	Added reference design summaries. Added SPI pin-out summary. Improved assembly options overview.
2.05	2010-05-18	FDR	Added indirect SPI configuration mode
2.06	2010-05-19	FDR	Improved JM5 pin-out: configuration and power management pins.
2.08	2012-02-22	FDR	Improved push buttons description. Corrected slide-switch positions.
2.08	2011-10-03	AIK	Modified block diagram. Added power supply diagram. Little fixes.
2.09	2011-10-05	AIK	Modified B2B section. Changed DDR and SPI specification.
2.10	2011-11-30	AIK	Clarification of SPI Flash options
2.11	2011-12-01	AIK	Board revision and assembly options chapter
2.12	2012-02-16	AIK	Module options chapter
2.13	2012-02-22	AIK	Dimensions image and description modifications
2.14	2012-02-22	AIK	Updated S1 switch description